2023年婁底職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年婁底職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年婁底職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年婁底職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年婁底職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年婁底職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.2.若點A分有向線段所成的比是2,則點C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D3.已知拋物線C1:x2=2py(p>0)上縱坐標為p的點到其焦點的距離為3.

(Ⅰ)求拋物線C1的方程;

(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設(shè)拋物線C1在點A,B處的切線交于點M,

(?。┣簏cM的軌跡C2的方程;

(ⅱ)若點Q為(ⅰ)中曲線C2上的動點,當直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.

…(5分)(Ⅱ)(?。┰O(shè)過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2

(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.

…(15分)4.拋物線y2=4x,O為坐標原點,A,B為拋物線上兩個動點,且OA⊥OB,當直線AB的傾斜角為45°時,△AOB的面積為______.答案:設(shè)直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設(shè)A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:855.x2+(m-3)x+m=0

一個根大于1,一個根小于1,m的范圍是______.答案:設(shè)f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.6.已知點P1(3,-5),P2(-1,-2),在直線P1P2上有一點P,且|P1P|=15,則P點坐標為()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C7.某工程隊有6項工程需要單獨完成,其中工程乙必須在工程甲完成后才能進行,工程丙必須在工程乙完成后才能進行,有工程丁必須在工程丙完成后立即進行.那么安排這6項工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個工程依次插在由甲、乙、丙丁四個工程之間即可,第一個插入時有4種,第二個插入時共5個空,有5種方法;可得有5×4=20種不同排法.故為:208.設(shè)復(fù)數(shù)z的實部是

12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.9.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨取(1,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)10.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B11.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故為7.12.已知兩個非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個數(shù)為7若A={1,2,}或{1,3}或{2,3}時,集合B中至少有一個元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個數(shù)為4×3=12若A={1}或{3}或{2}時集合中至少有二個元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個數(shù)是7+12+6=25故選C13.設(shè)O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()

A.

B.

C.

D.答案:B14.已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由平面與平面垂直的判定定理知如果m為平面α內(nèi)的一條直線,m⊥β,則α⊥β,反過來則不一定所以“α⊥β”是“m⊥β”的必要不充分條件.故選B.15.給定兩個長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點C在以O(shè)為圓心的圓弧AB上變動,若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點C在以O(shè)為圓心的圓弧AB上變動,得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].16.用隨機數(shù)表法進行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數(shù)字,這些步驟的先后順序應(yīng)為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機數(shù)表法進行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.17.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小,則實數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實數(shù)a的取值范圍為(-2,1)故為:(-2,1)18.設(shè)二項式(33x+1x)n的展開式的各項系數(shù)的和為P,所有二項式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項式(33x+1x)n的展開式的所有二項式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.19.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大?。?/p>

(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O(shè)為原點,CB、AF、OE所在直線為坐標軸,建立空間直角坐標系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.設(shè)異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.20.閱讀程序框圖,運行相應(yīng)的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B21.將3封信投入5個郵筒,不同的投法共有()

A.15

B.35

C.6

D.53種答案:D22.對于空間四點A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點共面,可得A、B、C、D四點有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.23.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進行一場比賽,則甲取得一勝一負的概率是______.答案:根據(jù)題意,甲取得一勝一負包含兩種情況,甲勝乙負丙,概率為:0.8×0.3=0.24;甲勝丙負乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負的概率為0.24+0.14=0.38故為0.3824.沿著正四面體OABC的三條棱OA、OB、OC的方向有大小等于1、2、3的三個力f1、f2、f3.試求此三個力的合力f的大小以及此合力與三條棱所夾角的余弦.答案:用a、b、c分別代表棱OA、OB、OC上的三個單位向量,則f1=a,f2=2b,f3=3c,則f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小為5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.25.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()

A.6塊

B.7塊

C.8塊

D.9塊答案:B26.命題“存在實數(shù)x,,使x>1”的否定是()

A.對任意實數(shù)x,都有x>1

B.不存在實數(shù)x,使x≤1

C.對任意實數(shù)x,都有x≤1

D.存在實數(shù)x,使x≤1答案:C27.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.28.下列給變量賦值的語句正確的是()

A.5=a

B.a(chǎn)+2=a

C.a(chǎn)=b=4

D.a(chǎn)=2*a答案:D29.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當A=45°時,sinA=22成立.若當A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.30.為了了解某社區(qū)居民是否準備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D31.已知函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.32.將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.33.已知點A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動點,直線BP與線段AP的垂直平分線交于點Q.

(1)證明點Q的軌跡是雙曲線,并求出軌跡方程.

(2)若(BQ+BA)?QA=0,求點Q的坐標.答案:(1)∵點Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點Q的軌跡是以A、B為焦點的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個頂點作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)34.已知|OA|=1,|OB|=3,OA?OB=0,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12

|OC

|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:335.已知△ABC是邊長為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()

A.a(chǎn)2

B.a(chǎn)2

C.a(chǎn)2

D.a(chǎn)2答案:C36.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571437.在空間直角坐標系中,點P(2,-4,6)關(guān)于y軸對稱點P′的坐標為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標系中,點(2,-4,6)關(guān)于y軸對稱,∴其對稱點為:(-2,-4,-6),故為:(-2,-4,-6).38.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()

A.至少有一個黒球與都是紅球

B.至少有一個黒球與都是黒球

C.至少有一個黒球與至少有1個紅球

D.恰有1個黒球與恰有2個黒球答案:D39.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:40.使方程

mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故選B.41.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.42.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:D43.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計算機上模擬航天器變軌返回試驗,設(shè)計方案

如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為

對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標為(6,4),|AC|=25,|BC|=4.故為:25、4.44.下列四個函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項A.選項B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對應(yīng)關(guān)系,故是同一個函數(shù),故選項B滿足條件.選項C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個函數(shù),故排除選項C.選項D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個函數(shù),故排除選項D,故選B.45.設(shè)拋物線y2=8x上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準線為x=-2,∵點P到y(tǒng)軸的距離是4,∴到準線的距離是4+2=6,根據(jù)拋物線的定義可知點P到該拋物線焦點的距離是6故選B46.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.47.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)當a<-1時△<0

B=φA(2)當a=-1時△=0

B={0}A(3)當a>-1時△>0

要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=148.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標,和圓C關(guān)于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))

(x-3)2+(y+2)2=16,表示圓心坐標(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.49.經(jīng)過拋物線y2=2x的焦點且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A50.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.第2卷一.綜合題(共50題)1.已知平面上直線l的方向向量=(-,),點O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D2.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應(yīng)填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當滿足條件是x是奇數(shù),不滿足條件時x為偶數(shù)故(1)中應(yīng)填寫r=1故為:r=13.設(shè)O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()

A.

B.

C.

D.答案:B4.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()

A.4

B.15

C.7

D.3答案:D5.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()

A.2

B.6+

C.3+2

D.6+3答案:D6.已知下列命題(其中a,b為直線,α為平面):

①若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;

②若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;

③若a∥α,b⊥α,則a⊥b;

④若a⊥b,則過b有且只有一個平面與a垂直.

上述四個命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時,不能得出直線與這個平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯誤;②垂直于這條直線的直線與這個平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個平面與a垂直,顯然正確.故選D.7.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.8.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos149.以雙曲線x24-y216=1的右焦點為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.10.有一矩形紙片ABCD,按圖所示方法進行任意折疊,使每次折疊后點B都落在邊AD上,將B的落點記為B′,其中EF為折痕,點F也可落在邊CD上,過B′作B′H∥CD交EF于點H,則點H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點H到定點B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點H的軌跡為:拋物線,(拋物線的一部分)故選D.11.函數(shù)f(x)=8xx2+2(x>0)()A.當x=2時,取得最小值83B.當x=2時,取得最大值83C.當x=2時,取得最小值22D.當x=2時,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當且僅當x=2x即x=2時,取得最大值22故選D.12.在平面直角坐標系xOy中,點A(-1,-2)、B(2,3)、C(-2,-1).

(1)求以線段AB、AC為鄰邊的平行四邊形兩條對角線的長;

(2)設(shè)實數(shù)t滿足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對角線的長分別為42、210.(方法二)設(shè)該平行四邊形的第四個頂點為D,兩條對角線的交點為E,則:E為B、C的中點,E(0,1)又E(0,1)為A、D的中點,所以D(1,4)故所求的兩條對角線的長分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11513.考慮坐標平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請問下列哪些選項是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).14.在下列條件中,使M與不共線三點A、B、C,一定共面的是

[

]答案:C15.以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形只能是()A.平行四邊形B.矩形C.菱形D.梯形答案:∵數(shù)集A={a,b,c,d}中的四個元素互不相同,∴以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形,四條邊不相等∴四邊形只可能是梯形故選D.16.將一根長為3m的繩子在任意位置剪斷,則剪得兩段的長都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,所以事件A發(fā)生的概率

P(A)=13.故選B17.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語文

B.數(shù)學(xué)

C.外語

D.都一樣答案:B18.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標準方程為:x225+y29=1,它的右焦點(4,0),右準線方程為:x=254.一個焦點到相應(yīng)準線的距離為:254-4=94.故為:94.19.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.20.已知A(3,0),B(0,3),O為坐標原點,點C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB

(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故選D.21.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D22.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量

(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量

(單位:千瓦時)低谷電價(單位:

元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.23.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是()

A.內(nèi)切

B.相交

C.外切

D.外離答案:B24.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為

______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為325.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點,點P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.26.已知a,b,c是正實數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。27.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當a>1時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當1>a>0時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.28.已知命題p:所有有理數(shù)都是實數(shù),命題q:正數(shù)的對數(shù)都是負數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.29.如圖,直線AB是平面α的斜線,A為斜足,若點P在平面α內(nèi)運動,使得點P到直線AB的距離為定值a(a>0),則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點P到直線AB的距離為定值a,所以,P點在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點P在平面α內(nèi)運動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.30.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓相切.

(1)求橢圓C1的方程;

(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于直線l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(3)設(shè)C2與x軸交于點Q,不同的兩點R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動點M的軌跡是以l1:x=-1為準線,F(xiàn)2為焦點的拋物線,∴點M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設(shè)R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當且僅當y1=±4時等號成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當y22=64,即y2=±8時|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)31.(文)橢圓的一個焦點與短軸的兩端點構(gòu)成一個正三角形,則該橢圓的離心率為()

A.

B.

C.

D.不確定答案:C32.當a≠0時,y=ax+b和y=bax的圖象只可能是()

A.

B.

C.

D.

答案:A33.若2x1+3y1=4,2x2+3y2=4,則過點A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因為過兩點確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=434.參數(shù)方程中當t為參數(shù)時,化為普通方程為(

)。答案:x2-y2=135.在空間直角坐標系中,已知點P(a,0,0),Q(4,1,2),且|PQ|=,則a=()

A.1

B.-1

C.-1或9

D.1或9答案:C36.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關(guān)系是()

A.內(nèi)含

B.內(nèi)切

C.相交

D.外切答案:A37.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數(shù)m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C38.直線被圓x2+y2=9截得的弦長為(

A.

B.

C.

D.答案:B39.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為440.某公司的管理機構(gòu)設(shè)置是:設(shè)總經(jīng)理一個,副總經(jīng)理兩個,直接對總經(jīng)理負責,下設(shè)有6個部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財務(wù)部和保衛(wèi)部.請根據(jù)以上信息補充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()

A.保衛(wèi)部,安全部

B.安全部,保衛(wèi)部

C.質(zhì)檢中心,保衛(wèi)部

D.安全部,質(zhì)檢中心

答案:B41.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A42.下列函數(shù)圖象中,正確的是()

A.

B.

C.

D.

答案:C43.已知空間四點A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[

]A

.4

B.1

C.10

D.11答案:D44.已知點D是△ABC的邊BC的中點,若記AB=a,AC=b,則用a,b表示AD為______.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對角線AE、BC交與點D,易知D是△ABC的邊BC的中點,且D是AE的中點,如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)45.函數(shù)y=(12)x的值域為______.答案:因為函數(shù)y=(12)x是指數(shù)函數(shù),所以它的值域是(0,+∞).故為:(0,+∞).46.在空間直角坐標系中,點,過點P作平面xOy的垂線PQ,則Q的坐標為()

A.

B.

C.

D.答案:D47.下列函數(shù)中,定義域為(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域為(0,+∞),函數(shù)y=x的定義域為[0,+∞),函數(shù)y=1x2的定義域為{x|x≠0},函數(shù)y=12x的定義域為R,故只有A中的函數(shù)滿足定義域為(0,+∞),故選A.48.給出命題:

①線性回歸分析就是由樣本點去尋找一條貼近這些點的直線;

②利用樣本點的散點圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;

③通過回歸方程=bx+a及其回歸系數(shù)b可以估計和預(yù)測變量的取值和變化趨勢;

④線性相關(guān)關(guān)系就是兩個變量間的函數(shù)關(guān)系.其中正確的命題是(

A.①②

B.①④

C.①②③

D.①②③④答案:D49.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個B.3個C.2個D.1個答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C50.設(shè)計一個計算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()

A.13

B.13.5

C.14

D.14.5答案:A第3卷一.綜合題(共50題)1.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當且僅當a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當且僅當a=b=c時,等號成立.2.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點在圓錐的底面內(nèi),另外的四個頂點在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D3.設(shè)x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A4.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()

A.y=-x

B.

C.y=-3x

D.答案:A5.在平面直角坐標系xOy中,設(shè)P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B6.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.7.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當a≤1時y=2x∴2a=2∴a=1當a>1時y=log13x∴2=loga13∴a=19不成立所以a=1故為:18.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一點D,使△ABD為鈍角三角形的概率為()A.16B.13C.12D.23答案:由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件對應(yīng)的是長度為3的一條線段,滿足條件的事件是組成鈍角三角形,包括兩種情況第一種∠ADB為鈍角,這種情況的分界是∠ADB=90°的時候,此時BD=1∴這種情況下,滿足要求的0<BD<1.第二種∠OAD為鈍角,這種情況的分界是∠BAD=90°的時候,此時BD=4∴這種情況下,不可能綜合兩種情況,若△ABD為鈍角三角形,則0<BD<1P=13故選B9.如圖,在△OAB中,P為線段AB上的一點,,且,則()

A.

B.

C.

D.

答案:A10.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個偶數(shù)時,下列假設(shè)正確的是()

A.假設(shè)a、b、c都是偶數(shù)

B.假設(shè)a、b、c都不是偶數(shù)

C.假設(shè)a、b、c至多有一個偶數(shù)

D.假設(shè)a、b、c至多有兩個偶數(shù)答案:B11.如圖是集合的知識結(jié)構(gòu)圖,如果要加入“全集”,則應(yīng)該放在()

A.“集合的概念”的下位

B.“集合的表示”的下位

C.“基本關(guān)系”的下位

D.“基本運算”的下位答案:D12.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B13.設(shè)直線l過點P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點,求|PA|?|PB|答案:(1)由于過點(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因為點A,B都在直線l上,所以可設(shè)它們對應(yīng)的參數(shù)為t1和t1,則點A,B的坐標分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因為t1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.14.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線如圖所示,則有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A15.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C16.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.17.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內(nèi)運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.18.下面程序運行后,輸出的值是()

A.42

B.43

C.44

D.45

答案:C19.已知圓O的兩弦AB和CD延長相交于E,過E點引EF∥CB交AD的延長線于F,過F點作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.20.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點B,∠MBA=30°,則AB的長為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:121.在下列條件中,使M與不共線三點A、B、C,一定共面的是

[

]答案:C22.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車,在這段時間內(nèi)有3班公共汽車,它們開車的時刻分別是7:40、7:50和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達車站的時刻是互相不牽連的,且每人在7:20至8:00時的任何時刻到達車站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車的概率為12×12=14,甲、乙同乘第二輛車的概率為14×14=116,甲、乙同乘第三輛車的概率為14×14=116,甲、乙同乘一車的概率為14+116+116=38,故選C.23.設(shè)兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22

和(5-22,5-22

),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:824.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識,某中學(xué)高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)下面的頻率分布表,解答下列問題:

序號

(i)分組

(分數(shù))本組中間值

(Gi)頻數(shù)

(人數(shù))頻率

(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合

計501(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);

(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于85分的同學(xué)能獲獎,請估計在參賽的800名學(xué)生中大概有多少同學(xué)獲獎?

(3)請根據(jù)頻率分布表估計該校高二年級參賽的800名同學(xué)的平均成績.答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計平均成績?yōu)?1分.(12分)25.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.

(1)方程兩根都大于1;

(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。26.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()

A.逗號

B.空格

C.分號

D.頓號答案:A27.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環(huán)語句答案:B28.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()

A.B與C互斥

B.A與C互斥

C.任意兩個事件均互斥

D.任意兩個事件均不互斥答案:B29.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形

AB1C1

的重心,設(shè)三角形

AB1C1

的面積為

3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31130.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個單位,同時向y軸正方向平移個單位.B.向x軸負方向平移個單位,同時向y軸正方向平移個單位.C.向x軸負方向平移個單位,同時向y軸負方向平移個單位.D.向x軸正方向平移個單位,同時向y軸負方向平移個單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.31.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實數(shù)m=______.答案:當m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復(fù)數(shù)z為純虛數(shù).故為:2.32.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B33.用反證法證明命題“如果a>b>0,那么a2>b2”時,假設(shè)的內(nèi)容應(yīng)是()

A.a(chǎn)2=b2

B.a(chǎn)2<b2

C.a(chǎn)2≤b2

D.a(chǎn)2<b2,且a2=b2答案:C34.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C35.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當?shù)淖鴺讼?,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)36.圓x2+y2=1上的點到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:337.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.

(1)求中三等獎的概率;

(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論