直線-平面垂直的判定及其性質(zhì)-面面垂直的性質(zhì)課件(新人教必修2)_第1頁
直線-平面垂直的判定及其性質(zhì)-面面垂直的性質(zhì)課件(新人教必修2)_第2頁
直線-平面垂直的判定及其性質(zhì)-面面垂直的性質(zhì)課件(新人教必修2)_第3頁
直線-平面垂直的判定及其性質(zhì)-面面垂直的性質(zhì)課件(新人教必修2)_第4頁
直線-平面垂直的判定及其性質(zhì)-面面垂直的性質(zhì)課件(新人教必修2)_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2.3.4平面與平面垂直的性質(zhì)1半平面定義平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。半平面:αlαl2.二面角的定義從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,每個半平面叫做二面角的面.棱為l,兩個面分別為、的二面角記為-l-

.llAB二面角-AB-l二面角-l-二面角C-AB-DABCD5OBA∠AOB二面角的認識你從圖中看出了二面角的幾種寫法?⑴平臥式:⑵直立式:ABABllABl3.畫二面角思考:把門打開,門和墻構(gòu)成二面角;把書打開,相鄰兩頁書也構(gòu)成二面角.隨著打開的程度不同,可得到不同的二面角,這些二面角的區(qū)別在哪里?打開的書怎樣度量二面角的大小?能否轉(zhuǎn)化為兩相交直線所成的角?4.二面角的大小l在二面角-l-的棱l上任取一點O,如圖,在半平面和內(nèi),從點O分別作垂直于棱l的射線OA、OB,射線OA、OB組成∠AOB.則∠AOB叫做二面角-l-的平面角怎樣度量二面角的大小?能否轉(zhuǎn)化為兩相交直線所成的角?OBAl4.二面角的大小在二面角-l-的棱l上任取一點O,如圖,在半平面和內(nèi),從點O分別作垂直于棱l的射線OA、OB,射線OA、OB組成∠AOB.則∠AOB叫做二面角-l-的平面角怎樣度量二面角的大?。磕芊褶D(zhuǎn)化為兩相交直線所成的角?OO1BAB1lA14.二面角的大小∠AOB的大小一定.二面角的大小可以用它的平面角來度量.即二面角的平面角是多少度,就說這個二面角是多少度.二面角的范圍:[0o,180o].①二面角的兩個面重合:0o;②二面角的兩個面合成一個平面:180o;4.二面角的大?、燮矫娼鞘侵苯堑亩娼墙兄倍娼牵甇AB二面角的平面角必須滿足:3)角的邊都要垂直于二面角的棱1)角的頂點在棱上2)角的兩邊分別在兩個面內(nèi)10lOABAOB二面角的平面角哪個對?怎么畫才對?1.定義法根據(jù)定義作出來2.垂面法作與棱垂直的平面與兩半平面的交線得到lγABO12lOAB3.垂線法二面角的平面角的作法AOlD歸納:求二面角大小的步驟為:(1)找出或作出二面角的平面角;(2)證明其符合定義(垂直于棱);(3)計算.問題:如何檢測所砌的墻面和地面是否垂直?5.

平面與平面垂直兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直.平面與垂直,記作⊥.

如果一個平面經(jīng)過了另一個平面的一條垂線,那么這兩個平面互相垂直.猜想:

如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直面面垂直的判定定理符號表示:ABCD線面垂直面面垂直線線垂直例1

如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上不同于A,B的任意一點,求證:平面PAC⊥平面PBC.PABOC例1

如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上不同于A,B的任意一點,求證:平面PAC⊥平面PBC.線線垂直→線面垂直→面面垂直PABOC練習(xí)1:教材P69探究(1)四個面的形狀怎樣?(2)有哪些直線與平面垂直?(3)任意兩個平面所成的二面角的平面角如何確定?ABCD課堂練習(xí):1.如果平面α內(nèi)有一條直線垂直于平面β內(nèi)的一條直線,則α⊥β.()3.如果平面α內(nèi)的一條直線垂直于平面β內(nèi)的兩條相交直線,則α⊥β.()一、判斷:××4.若m⊥α,mβ,則α⊥β.()∪√2.如果平面α內(nèi)有一條直線垂直于平面β內(nèi)的兩條直線,則α⊥β.()√1.過平面α的一條垂線可作_____個平面與平面α垂直.2.過一點可作____個平面與已知平面垂直.二、填空題:3.過平面α的一條斜線,可作____個平面與平面α垂直.4.過平面α的一條平行線可作____個平面與α垂直.一無數(shù)無數(shù)一尋找二面角的平面角在正方體ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.BACDA’B’C’D’BACDA’B’C’D’尋找二面角的平面角在正方體ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.尋找二面角的平面角BACDA’B’C’D’O尋找二面角的平面角在正方體ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.BACDA’B’C’D’O尋找二面角的平面角在正方體ABCD-A’B’C’D’中,找出下列二面角的平面角:(1)二面角D’-AB-D和A’-AB-D;(2)二面角C’-BD-C和C’-BD-A.例2已知空間四邊形ABCD的四條邊和對角線都相等,求平面ACD和平面BCD所成二面角的大小.DAECB練習(xí)2:如圖,已知三棱錐D-ABC的三個側(cè)面與底面全等,且AB=AC=,BC=2,求以BC為棱,以面BCD與面BCA為面的二面角的大?。烤毩?xí)2:如圖,已知三棱錐D-ABC的三個側(cè)面與底面全等,且AB=AC=,BC=2,求以BC為棱,以面BCD與面BCA為面的二面角的大小?DAECB練習(xí)3:

ABCD是正方形,O是正方形的中心,PO⊥平面ABCD

,E是PC的中點,求證:(1)PC⊥平面BDE;

(2)平面PAC⊥BDE.是正方形,POABCDE歸納小結(jié):

(1)判定面面垂直的兩種方法:

①定義法②根據(jù)面面垂直的判定定理(2)面面垂直的判定定理不僅是判定兩個平面互相垂直的依據(jù),而且是找出垂直于一個平面的另一個平面的依據(jù);(3)從面面垂直的判定定理我們還可以看出面面垂直的問題可以轉(zhuǎn)化為線面垂直的問題來解決.三、如右圖:A是ΔBCD所在平面外一點,AB=AD,∠ABC=∠ADC=90°,E是BD的中點,求證:平面AEC⊥平面ABDDACBE一、復(fù)習(xí)引入1、平面與平面垂直的定義2、平面與平面垂直的判定定理一個平面過另一個平面的垂線,則這兩個平面垂直。符號表示:b兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直。提出問題:該命題正確嗎?二、探索研究Ⅰ.觀察實驗觀察兩垂直平面中,一個平面內(nèi)的直線與另一個平面的有哪些位置關(guān)系?Ⅱ.概括結(jié)論平面與平面垂直的性質(zhì)定理b兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.簡述為:面面垂直線面垂直該命題正確嗎?符號表示:Ⅲ.知識應(yīng)用練習(xí)1:判斷正誤。已知平面α⊥平面β,α∩β=l下列命題(2)垂直于交線l的直線必垂直于平面β()(3)過平面α內(nèi)任意一點作交線的垂線,則此垂線必垂直于平面β()(1)平面α內(nèi)的任意一條直線必垂直于平面β()√××例1:如圖,在長方體ABCD-A’B’C’D’中,(1)判斷平面ACC’A’與平面ABCD的位置關(guān)系(2)MN在平面ACC’A’內(nèi),MN⊥AC于M,判斷MN與AB的位置關(guān)系。ABCDA’B’C’D’MN例2:如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,平面PAC⊥平面ABC,BOPAC(2)判斷平面PBC與平面PAC的位置關(guān)系。(1)判斷BC與平面PAC的位置關(guān)系,并證明。(1)證明:∵AB是⊙O的直徑,C是圓周上不同于A,B的任意一點∴∠ACB=90°∴BC⊥AC又∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,

BC平面ABC∴BC⊥平面PAC(2)又∵BC平面PBC,∴平面PBC⊥平面PAC解題反思2、本題充分地體現(xiàn)了面面垂直與線面垂直之間的相互轉(zhuǎn)化關(guān)系。1、面面垂直的性質(zhì)定理給我們提供了一種證明線面垂直的方法面面垂直線面垂直性質(zhì)定理判定定理練習(xí)2:如圖,已知PA⊥平面ABC,平面PAB⊥平面PBC,求證:BC⊥平面PABPABCE證明:過點A作AE⊥PB,垂足為E,∵平面PAB⊥平面PBC,平面PAB∩平面PBC=PB,∴AE⊥平面PBC∵BC平面PBC∴AE⊥BC∵PA⊥平面ABC,BC平面ABC∴PA⊥BC∵PA∩AE=A,∴BC⊥平面PAB練習(xí)3:如圖,以正方形ABCD的對角線AC為折痕,使△ADC和△ABC折成相垂直的兩個面,求BD與平面ABC所成的角。ABCDDABCOO折成1、平面與平面垂直的性質(zhì)定理:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。2、證明線面垂直的兩種方法:線線垂直→線面垂直;面面垂直→線面垂直3、線線、線面、面面之間的關(guān)系的轉(zhuǎn)化是解決空間圖形問題的重要思想方法。三、小結(jié)反思1、如圖,α⊥β,α∩β=l,ABα,AB⊥l,BCβ,DEβ,BC⊥DE.求證:AC⊥DE.ABCDE四、作業(yè)布置2.如圖,平面AED⊥平面ABCD,△AED是等邊三角形,四邊形ABCD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論