版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
平行線的判定與性質(zhì)的綜合運(yùn)用1.掌握平行線的性質(zhì)和判定,理解平行線的性質(zhì)和判定的區(qū)別.2.能熟練運(yùn)用平行線的性質(zhì)和判定作簡單的推理.兩直線平行{1.同位角相等2.內(nèi)錯(cuò)角相等3.同旁內(nèi)角互補(bǔ)性質(zhì)判定1.由_________得到___________的結(jié)論是平行線的判定;請注意:2.由____________得到______________的結(jié)論是平行線的性質(zhì).用途:用途:角的關(guān)系兩直線平行說明直線平行兩直線平行
角相等或互補(bǔ)說明角相等或互補(bǔ)綜合應(yīng)用:ABCDEF1231、填空:
(1)、∵∠A=____,(已知)
AC∥ED,(_____________________)
(2)、∵AB∥______,(已知)∠2=∠4,(______________________)45(3)、___∥___,(已知)∠B=∠3.(___________
___________)
∠4同位角相等,兩直線平行。DF兩直線平行,內(nèi)錯(cuò)角相等。ABDF兩直線平行,同位角相等.判定性質(zhì)
性質(zhì)∴∴∴∵2.如圖所示,下列推理正確的是(
)A.∵∠1=∠4,∴BC∥ADB.∵∠2=∠3,∴AB∥CDC.∵AD∥BC,∴∠BCD+∠ADC=180°D.∵∠1+∠2+∠C=180°,∴BC∥AD24BC13AD題組訓(xùn)練(1)3.如圖,已知AB∥CD,四種說法其中正確的個(gè)數(shù)是(
)①∠A+∠B=180°;②∠B+∠C=180°;③∠C+∠D=180°;④∠D+∠A=180°A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)CDBA題組訓(xùn)練(1)解:∴∠2=∠3(等量代換)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代換)∴DF∥AC(內(nèi)錯(cuò)角相等,兩直線平行)例1:如圖,點(diǎn)E為DF上的點(diǎn),點(diǎn)B為AC上的點(diǎn),∠1=∠2,∠C=∠D,求證:DF∥AC321DEFABC∵∠1=∠2(已知)∠1=∠3(對頂角相等)∴BD∥CE(同位角相等,兩直線平行)∴∠C=∠ABD(兩直線平行,同位角相等)解:∴∠2=∠3(等量代換)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代換)∴DF∥AC(內(nèi)錯(cuò)角相等,兩直線平行)思考1:如圖,點(diǎn)B、E分別在AC、DF上,BD、CE均與AF相交,∠1=∠2,∠C=∠D,試問:∠A與∠F相等嗎?請說出你的理由。321DEFABC∵∠1=∠2(已知)∠1=∠3(對頂角相等)∴BD∥CE(同位角相等,兩直線平行)∴∠C=∠ABD(兩直線平行,同位角相等)∴∠A=∠F(兩直線平行,內(nèi)錯(cuò)角相等)解:又∵∠C=∠D(已知)∴∠D=∠ABD(兩直線平行,內(nèi)錯(cuò)角相等)∴BD∥CE(同位角相等,兩直線平行)思考2:如圖,已知∠A=∠F,∠C=∠D,求證:BD//CE.321DEFABC∴∠C=∠ABD(等量代換)∵∠A=∠F(已知)∴DF∥AC(內(nèi)錯(cuò)角相等,兩直線平行)例2:如圖所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求證:∠1+∠2=90°.12ABCDEE思考一:
已知AB∥CD,GM,HM分別平分∠FGB,∠EHD,試判斷GM與HM是否垂直?MGHFEDCBAMGHFEDCBA思考2:若已知GM,HM分別平分∠FGB,∠EHD,GM⊥HM,試判斷AB與CD是否平行?探究提高1、
如下左圖,從下列條件中(1)
AE平分∠BAC,(2)CE平分∠ACD(3)且AE⊥CE(4)AB∥CD,任選3個(gè)作為已知條件,另一個(gè)作為結(jié)論,編一道數(shù)學(xué)題,并說明理由。思考3
:已知AB∥CD,GP,HQ分別平分∠EGB,∠EHD,判斷GP與HQ是否平行?BACDFEHGPQ思考4:已知AB∥CD,GP,HQ分別平分∠AGF,∠EHD,判斷GP與HQ是否平行?BACDFEHGPQ解:∴∠BAD=∠ADC(兩直線平行,內(nèi)錯(cuò)角相等)又∵∠1=∠2(已知)∴∠E=∠F(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD(已知)∴AF∥DE(內(nèi)錯(cuò)角相等,兩直線平行)∴∠3=∠4(等式的性質(zhì))例3:如圖,已知AB∥CD,
∠1=∠2,求證∠E=∠F.F1EDBA2C)(34思考1:如圖,已知∠E=∠F,
∠1=∠2,求證AB∥CD.F1EDBA2C)(34思考2:如圖,已知AB∥CD,
∠E=∠F,求證∠1=∠2.F1EDBA2C)(34思考3:如圖,已知AB∥CD,AF∥DE,
求證∠1=∠2.F1EDBA2C)(34思考4:如圖,已知∠1=∠2,AF∥DE,
求證AB∥CD.F1EDBA2C)(341.如圖,已知AD⊥BC于D,EG⊥BC于G,∠E=∠1,那么AD是∠BAC的角平分線嗎?試說明理由。
EBDC2AG1331題組訓(xùn)練(2)2.如圖,已知∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠AOB的大小關(guān)系,并對結(jié)論進(jìn)行證明。
EB2AD34FC1題組訓(xùn)練(2)題組訓(xùn)練(3)下列五個(gè)判斷,選其中的2個(gè)作為條件,另一個(gè)作為結(jié)論,正確的有幾個(gè)?(1)a//b(2)b//c(3)a//c(4)a⊥c(5)b⊥c作業(yè):.如圖所示,已知AB∥CD,分別探
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國安全控制系統(tǒng)行業(yè)應(yīng)用狀況及投資模式分析報(bào)告
- 2024-2030年中國嬰幼兒產(chǎn)品市場競爭力策略及投資盈利分析報(bào)告
- 2024-2030年中國大提花貢緞行業(yè)競爭格局及前景趨勢預(yù)測報(bào)告
- 2024-2030年中國臺階鏜刀行業(yè)市場發(fā)展規(guī)模及投資可行性分析報(bào)告
- 眉山藥科職業(yè)學(xué)院《國際商務(wù)談判實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年昆明住宅購買合同
- 2024年漁業(yè)供貨合同
- 主鏡頭和關(guān)系鏡頭
- 2024年度網(wǎng)絡(luò)安全防護(hù)技術(shù)支持服務(wù)合同范本3篇
- 呂梁師范高等??茖W(xué)?!妒称飞锛夹g(shù)專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 八年級道法上冊第一學(xué)期期末綜合測試卷(人教版 2024年秋)
- 2025屆江蘇省期無錫市天一實(shí)驗(yàn)學(xué)校數(shù)學(xué)七年級第一學(xué)期期末達(dá)標(biāo)檢測試題含解析
- UG基礎(chǔ)培訓(xùn)課件
- 城市軌道交通運(yùn)營管理【共30張課件】
- 鋼結(jié)構(gòu)設(shè)計(jì)智慧樹知到期末考試答案章節(jié)答案2024年山東建筑大學(xué)
- 2024年廣東省廣州市荔灣區(qū)中考一模語文試題
- 人教版四年級上冊數(shù)學(xué)數(shù)學(xué)復(fù)習(xí)資料
- TD/T 1066-2021 不動(dòng)產(chǎn)登記數(shù)據(jù)庫標(biāo)準(zhǔn)(正式版)
- 睡眠中心宣傳方案
- 2024春期國開電大??啤督ㄖ茍D基礎(chǔ)》在線形考(形考性考核作業(yè)一至四)試題及答案
- 論《國際貨物銷售合同公約》的適用問題
評論
0/150
提交評論