第5章生態(tài)多樣性及其測(cè)度_第1頁(yè)
第5章生態(tài)多樣性及其測(cè)度_第2頁(yè)
第5章生態(tài)多樣性及其測(cè)度_第3頁(yè)
第5章生態(tài)多樣性及其測(cè)度_第4頁(yè)
第5章生態(tài)多樣性及其測(cè)度_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

生態(tài)多樣性及其測(cè)度參考書(shū):E.C.Pielou1975,EcologicalDiversity文獻(xiàn)AnneE.magurran1988EcologicalDiversityanditsmeasurement李典謨1987,生態(tài)的多樣性度量生態(tài)學(xué)雜志,6(4):49-52馬克平第十章生物群落多樣性的測(cè)度方法中國(guó)科學(xué)院生物多樣性委員會(huì)主編“生物多樣性研究的原理與方法”1994Whydiversity?Therearethreereasonswhyecologistsareinterestedinecologicaldiversityanditsmeasurement.First,despitechangingfashionsandpreoccupations,diversityremainedacentralthemeinecology.Thewelldocumentedpatternsofspatialandtemporalvariationindiversitywhichintriguedtheearlyinvestigatorsofthenaturalworldcontinuetostimulatethemindsofecologiststoday.Second,measuresofdiversityarefrequentlyseenasindicatorsofthewellbeingofecologicalsystems.Thirdly,considerabledebatesurroundsthemeasurementofdiversity.Diversitymayappeartobeastraightforwardconceptwhichcanbequicklyandpainlesslymeasured.Thereishoweverasimpleexplanationwhydiversityissohardtodefine.Thatisbecausediversityconsistsofnotonebuttwocomponents.Thesearefirstthevarietyandsecondlytherelativeabundanceofspecies.一生態(tài)多樣性指數(shù)的概念(1)種數(shù)多少(2)各種之間相對(duì)豐富度首先是由Fisher提出,Williams引用(Fisheretal1943)所以,分布越均勻,V越小,p也越小,ln(1+p)越小,越大

大量的研究表明(magurran,1988):α是一個(gè)很好的多樣性指數(shù),即使對(duì)數(shù)級(jí)數(shù)模型不是最好的理論分布的時(shí)候也是如此。Magurran,A.E.1988.EcologicalDiversityandItsMeasurement.NewJersey:PrincetonUniversityPress2.多樣性的信息度量A1p1A2P2……AjPj……AsPs(3)A分類B分類A1p1…AjPj…AsPsB1q1BkqkBtqtA1B1π11AjAjBkπjkAsBtπskNoteonbiologicaldiversity,evennessandhomogeneitymeasuresT.O.Kvalsethetal1991OIKOS62:(1)一個(gè)可以接受的多樣性的測(cè)度至少應(yīng)具備:(1)合理地簡(jiǎn)單,便于計(jì)算和理解(2)從生物學(xué)、統(tǒng)計(jì)學(xué)或者數(shù)學(xué)上有適當(dāng)?shù)幕A(chǔ)(3)包含種數(shù)和均勻性兩個(gè)概念(4)有一個(gè)直觀合理的解釋(5)具有所希望的特性Kemoton(1979)notedthatdifferentdiversityindicesoftenproducedinconsistentorderingsofcommunities.Hedidhoweverconcludethatthisinconsistencyisrarerinfielddatathananalysesusingartificialandunrealisticdatasuggest.Thediscussionabovesupportsthisfindingprovidedthatindicesfromwithineitherthespeciesrichnessgrouporthedominance/evennessgrouparechosen.DiscriminantabilitySensitivitytosamplesizeRichnessorevennessdominanceCalculationWidelysued?α(logseries)

GoodlowrichnesssimpleYesλ(lognormal)GoodmoderaterichnesscomplexnoQ(statistic)GoodlowrichnesscomplexnoS(speciesrichness)GoodHighrichnesssimpleYesMargalefindexGoodHighrichnesssimplenoShannonindexmoderatemoderaterichnessintermediateYesBrillouinindexmoderatemoderaterichnesscomplexnoMcIntoshUindexGoodmoderaterichnessintermediatenoSimpsonindexmoderatelowdominanceintermediateYesBerger-ParkerindexpoorlowdominancesimplenoShannonevennesspoormoderateevennesssimplenoBrillouinevennesspoormoderateevennesscomplexnoMcIntoshDindexpoormoderatedominancesimplenoTable:AsummaryoftheperformanceandcharacteristicsofarangeofdiversitystatisticsSotheecologistfindingthatthediversity(calculatedusingtheShannonindex)ofthebirdfaunaintwowoodlandsisH’=2.31andH’=1.95isleftwonderingwhetherthewoodlandsarereallyquitesimilarintermsofdiversityorareinfactverydifferent.AnalysisofvarianceJack-knifingRepeatedestimatesofdiversityareusuallynormallydistributed.Indexcalculatedforlight-trapcatchesTheanalysisofvariancecanbeusedtotestforsignificantdifferencesinthediversityofsites.ForinstanceGaudreault

etal.(1986)usedthistechniquetoshowthattherewerenosignificantdifferencesbetweenmonthsinthediversityofthedietsofsticklebacks(Pungitius

pungitius).(SokalandRohlf,1981)Jack-knifinganindexofdiversityThebeautyofthemethodisthatitmakesnoassumptionsabouttheunderlyingdistribution,Instead,aseriesofjack-knifeestimatesandpseudo-valuesareproduced.Thesepseudovaluesarenormallydistributedandtheirmeanformsthebestestimateofthestatistic.Confidencelimitscanalsobeattachedtotheestimate.JACKKNIFETECHNIQUESTheadventofmoderncomputershasopenedupaseriesofnewstatisticaltechniquesthatareofgreatimportancetoecologistsbecausetheyreleaseusfromtworestrictiveassumptionsofparametricstatistics:(1)thenormalfrequencydistribution,and(2)musthavegoodtheoreticalproperties,sothatconfidencelimitscanbederivedmathematically.ThejackknifetechniquewasfirstsuggestedbyTukey(1958).Wewouldliketoknowhowmuchbetterourestimatewouldbeifwehadonemoresample,butwedonothaveanymoresamples,soweasktheconversequestion:Howmuchworsewouldwebeifwehadonelesssample?Beginningwithasetofnmeasurements,thejackknifeisdoneasfollows:Step1.

Recombinetheoriginaldata:Wedothisbyomittingoneofthenreplicatesfromthejackknifesample.Step2.

Calculatepseudovaluesoftheparameterofinterestforeachrecombiningofthedata:

Step3.

Estimatethemeanandstandarderroroftheparameterofinterestfromtheresultingpseudovalues.ThedataconsistofthenumberoffishcollectedinfivesectionsoftheUpperRegionofBlackCreek(24Species),Mississippi(Rossetal.,1987).SpeciesSection∑12345Esox

americanus14130010Ericymba

buccata1533562983Notropis

volucellus2613877431111---------------11360---4504---2074----------------UsingSimpson’sindextoestimatethediversityofallstationstogether:

Ds=4.96計(jì)算VPi=nV-[(n-1)VJj]其中VJj:jack-knifeestimate把第j樣去除后算得的多樣性指數(shù);

n:樣本數(shù).Excludedsection1VJiVPi14.895.2425.293.6434.935.0845.522.7254.636.28VPi的平均數(shù)是4.59,它是河中魚(yú)的最好的估計(jì)量.SEVP=SDVPi/Summary

Thelargenumberofdiversitystatisticsavailablemeansthatitmaybedifficulttoselectthemostappropriatemethodsofmeasuringdiversity.Whenappliedtorealisticdatasetsthesediversityindicescanbedividedintotwocategories.Ononehandtherearetheindiceswhichreflectthespeciesrichnesselementofdiversitywhileontheotherhandtherearemeasureswhichexpressthedegreeofdominance(evenness)onthedata.Asageneralobservation,indicesinthefirstcategoryarebetteratdiscriminatingbetweensamplesbutaremoreaffectedbysamplesizethanthedominance/evennesssetofdiversitymeasures.Forreasonsofstandardizationitwouldbeprudentifecologistswouldconcentrateononeorafewindices.Thelogseriesindexα,theBerger-Parkerdominanceindex,andameasureofspeciesrichness(eitherSortheMargalef

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論