版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤22.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.3.一元二次方程的根是()A. B.C. D.4.已知實數(shù)a、b滿足,則A. B. C. D.5.若正比例函數(shù)y=3x的圖象經(jīng)過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y26.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm7.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.18.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.9.下列說法中,正確的個數(shù)共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內(nèi)心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個10.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數(shù)為()A.65° B.60°C.55° D.45°二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的不等式組的整數(shù)解共有3個,則a的取值范圍是_____.12.因式分解:____________.13.如圖,隨機閉合開關,,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.14.如圖,在△ABC中,AB=AC=10cm,F(xiàn)為AB上一點,AF=2,點E從點A出發(fā),沿AC方向以2cm/s的速度勻速運動,同時點D由點B出發(fā),沿BA方向以lcm/s的速度運動,設運動時間為t(s)(0<t<5),連D交CF于點G.若CG=2FG,則t的值為_____.15.關于的一元二次方程有兩個相等的實數(shù)根,則________.16.如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.三、解答題(共8題,共72分)17.(8分)王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調查,每位學生最終評價結果為主動質疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了
名學生;(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在扇形的圓心角度數(shù)為
度;(3)請將頻數(shù)分布直方圖補充完整;(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?18.(8分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標.(2)求點M的坐標(用含a的代數(shù)式表示).(3)當點N在第一象限,且∠OMB=∠ONA時,求a的值.19.(8分)“綠水青山就是金山銀山”,北京市民積極參與義務植樹活動.小武同學為了了解自己小區(qū)300戶家庭在2018年4月份義務植樹的數(shù)量,進行了抽樣調查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務植樹”是新時代首都全民義務植樹組織形式和盡責方式的一大創(chuàng)新,2018年首次推出義務植樹網(wǎng)上預約服務,小武同學所調查的這30戶家庭中有7戶家庭采用了網(wǎng)上預約義務植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.20.(8分)甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產(chǎn)更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖象如圖所示.(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?再經(jīng)過多長時間恰好裝滿第2箱?21.(8分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.22.(10分)學校決定從甲、乙兩名同學中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.請回答下列問題:甲成績的中位數(shù)是______,乙成績的眾數(shù)是______;經(jīng)計算知,.請你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.23.(12分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).24.某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.2、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質,含30度直角三角形的性質,以及弧長公式,熟練掌握切線的性質是解答本題的關鍵.3、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.4、C【解析】
根據(jù)不等式的性質進行判斷.【詳解】解:A、,但不一定成立,例如:,故本選項錯誤;
B、,但不一定成立,例如:,,故本選項錯誤;
C、時,成立,故本選項正確;
D、時,成立,則不一定成立,故本選項錯誤;
故選C.【點睛】考查了不等式的性質要認真弄清不等式的基本性質與等式的基本性質的異同,特別是在不等式兩邊同乘以或除以同一個數(shù)時,不僅要考慮這個數(shù)不等于0,而且必須先確定這個數(shù)是正數(shù)還是負數(shù),如果是負數(shù),不等號的方向必須改變.5、A【解析】
分別把點A(?1,y1),點B(?1,y1)代入函數(shù)y=3x,求出點y1,y1的值,并比較出其大小即可.【詳解】解:∵點A(?1,y1),點B(?1,y1)是函數(shù)y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,即一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.6、A【解析】試題分析:由折疊的性質知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.7、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.8、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.9、C【解析】
根據(jù)外接圓的性質,圓的對稱性,三角形的內(nèi)心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內(nèi)心是三個內(nèi)角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質,三角形的內(nèi)心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.10、A【解析】
根據(jù)線段垂直平分線的性質得到AD=DC,根據(jù)等腰三角形的性質得到∠C=∠DAC,求得∠DAC=30°,根據(jù)三角形的內(nèi)角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質,三角形的內(nèi)角和,正確掌握線段垂直平分線的性質是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關于x的不等式組的整數(shù)解共有3個,∴3個整數(shù)解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.12、3(x-2)(x+2)【解析】
先提取公因式3,再根據(jù)平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.13、【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結果,且每種結果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關為:K1、K3與K3、K1共兩種結果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.14、1【解析】
過點C作CH∥AB交DE的延長線于點H,則,證明,可求出CH,再證明,由比例線段可求出t的值.【詳解】如下圖,過點C作CH∥AB交DE的延長線于點H,則,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案為:1.【點睛】本題主要考查了三角形中的動點問題,熟練掌握三角形相似的相關方法是解決本題的關鍵.15、-1.【解析】
根據(jù)根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數(shù)根;當==0時,方程有兩個相等的實數(shù)根;當=<0時,方程無實數(shù)根.16、6﹣π【解析】過F作FM⊥BE于M,則∠FME=∠FMB=90°,
∵四邊形ABCD是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:BD=2,
∵將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,
∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴陰影部分的面積=×2×2+×4×2+-=6-π.
故答案為:6-π.點睛:本題考查了旋轉的性質,解直角三角形,正方形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.三、解答題(共8題,共72分)17、(1)560;(2)54;(3)詳見解析;(4)獨立思考的學生約有840人.【解析】
(1)由“專注聽講”的學生人數(shù)除以占的百分比求出調查學生總數(shù)即可;(2)由“主動質疑”占的百分比乘以360°即可得到結果;(3)求出“講解題目”的學生數(shù),補全統(tǒng)計圖即可;(4)求出“獨立思考”學生占的百分比,乘以2800即可得到結果.【詳解】(1)根據(jù)題意得:224÷40%=560(名),則在這次評價中,一個調查了560名學生;故答案為:560;(2)根據(jù)題意得:×360°=54°,則在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數(shù)為54度;故答案為:54;(3)“講解題目”的人數(shù)為560-(84+168+224)=84,補全統(tǒng)計圖如下:(4)根據(jù)題意得:2800×(人),則“獨立思考”的學生約有840人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、(1)D(2,2);(2);(3)【解析】
(1)令x=0求出A的坐標,根據(jù)頂點坐標公式或配方法求出頂點B的坐標、對稱軸直線,根據(jù)點A與點D關于對稱軸對稱,確定D點坐標.(2)根據(jù)點B、D的坐標用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點的坐標.(3)根據(jù)點A、B的坐標用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進而求出交點N的坐標,得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長,表示出EN的長.根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)當x=0時,,∴A點的坐標為(0,2)∵∴頂點B的坐標為:(1,2-a),對稱軸為x=1,∵點A與點D關于對稱軸對稱∴D點的坐標為:(2,2)(2)設直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當y=0時,ax+2-2a=0,解得:x=∴M點的坐標為:(3)由D(2,2)可得:直線OD解析式為:y=x設直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯(lián)立成方程組:,解得:∴N點的坐標為:()ON=()過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M,C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開口向下,故a<0,∴a=舍去,【點睛】本題是一道二次函數(shù)與一次函數(shù)及三角函數(shù)綜合題,掌握并靈活應用二次函數(shù)與一次函數(shù)的圖象與性質,以及構建直角三角形借助點的坐標使用相等角的三角函數(shù)是解題的關鍵.19、(1)3.4棵、3棵;(2)1.【解析】
(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預約義務植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【點睛】此題考查條形統(tǒng)計圖,加權平均數(shù),眾數(shù),解題關鍵在于利用樣本估計總體.20、(1)見解析(2)300(3)2小時【解析】
解:(1)設甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為.根據(jù)題意,得,解得.所以,甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為:.(2)當時,.因為更換設備后,乙組工作效率是原來的2倍,所以,.解得.(3)乙組更換設備后,乙組加工的零件的個數(shù)y與時間x的函數(shù)關系式為.當0≤x≤2時,.解得.舍去.當2<x≤2.8時,.解得.舍去.當2.8<x≤4.8時,.解得.所以,經(jīng)過3小時恰好裝滿第1箱.當3<x≤4.8時,.解得.舍去.當4.8<x≤6時..解得.因為5-3=2,所以,再經(jīng)過2小時恰好裝滿第2箱.21、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質可求得的值,當點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國復合管帶座內(nèi)牙三通行業(yè)投資前景及策略咨詢研究報告
- 年度自動數(shù)字空中三角測量系統(tǒng)競爭策略分析報告
- 年度防靜電材料戰(zhàn)略市場規(guī)劃報告
- 2025屆高考地理一輪復習綜合集訓22人口分布人口增長與人口合理容量含解析新人教版
- 廣西壯族自治區(qū)柳州市柳州高級中學2025屆高一物理第一學期期中達標檢測試題含解析
- 湖南省茶陵三中2025屆物理高一第一學期期末復習檢測試題含解析
- 2025屆安徽省合肥市金湯白泥樂槐六校物理高三上期末經(jīng)典試題含解析
- 2025屆北京海淀區(qū)北方交通大學附屬中學物理高二上期末學業(yè)質量監(jiān)測模擬試題含解析
- 擦鞋布市場洞察報告
- 變壓器產(chǎn)品入市調查研究報告
- 2024小學數(shù)學義務教育新課程標準(2022版)必考題庫附含答案
- 仿古亭施工方案
- 云南省八年級《信息技術》上冊教案:第2課 探究因特網(wǎng)
- 幼兒園大班數(shù)學《6的組成與分解》課件
- 消化內(nèi)鏡護士進修匯報
- 07《車遲國斗法》-《西游記》故事精講精練
- 年產(chǎn)100萬瓶工業(yè)氣體、醫(yī)用氧氣充裝項目可研報告
- 單位反恐專項經(jīng)費保障制度
- 前程無憂國企招聘筆試題庫
- 信息網(wǎng)絡傳播權的侵權認定及其保護
- GB/T 44143-2024科技人才評價規(guī)范
評論
0/150
提交評論