2023屆廣東省東莞市長安實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)猜題卷含解析_第1頁
2023屆廣東省東莞市長安實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)猜題卷含解析_第2頁
2023屆廣東省東莞市長安實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)猜題卷含解析_第3頁
2023屆廣東省東莞市長安實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)猜題卷含解析_第4頁
2023屆廣東省東莞市長安實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一、單選題在某?!拔业闹袊鴫簟毖葜v比賽中,有7名學(xué)生參加了決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前3名,不僅要了解自己的成績,還要了解這7名學(xué)生成績的()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差2.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.93.如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.464.方程有兩個實(shí)數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<15.“遼寧號”航母是中國海軍航空母艦的首艦,標(biāo)準(zhǔn)排水量57000噸,滿載排水量67500噸,數(shù)據(jù)67500用科學(xué)記數(shù)法表示為A.675×102 B.67.5×102 C.6.75×104 D.6.75×1056.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°7.如圖,在⊙O中,O為圓心,點(diǎn)A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°8.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對應(yīng)的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或59.如圖,EF過?ABCD對角線的交點(diǎn)O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.1010.如圖,A、B、C三點(diǎn)在正方形網(wǎng)格線的交點(diǎn)處,若將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.Rt△ABC中,AD為斜邊BC上的高,若,則.12.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時(shí)針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.13.如圖,點(diǎn)、、在直線上,點(diǎn),,在直線上,以它們?yōu)轫旤c(diǎn)依次構(gòu)造第一個正方形,第二個正方形,若的橫坐標(biāo)是1,則的坐標(biāo)是______,第n個正方形的面積是______.14.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.15.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(1)AB的長等于____;(2)在△ABC的內(nèi)部有一點(diǎn)P,滿足S△PABS△PBCS△PCA=1:2:3,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)P,并簡要說明點(diǎn)P的位置是如何找到的(不要求證明)_______16.如圖,已知,,則________.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線經(jīng)過原點(diǎn)o和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對稱軸與x軸交于點(diǎn)D.直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對稱軸交于點(diǎn)F.(1)求m的值及該拋物線對應(yīng)的解析式;(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo);(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運(yùn)動,設(shè)點(diǎn)M的運(yùn)動時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形.若能,請直接寫出點(diǎn)M的運(yùn)動時(shí)間t的值;若不能,請說明理由.18.(8分)嘉淇同學(xué)利用業(yè)余時(shí)間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計(jì),制成如圖12所示的折線統(tǒng)計(jì)圖.這組成績的眾數(shù)是;求這組成績的方差;若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).19.(8分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進(jìn)的“計(jì)算機(jī)輔助電話訪問系統(tǒng)”(簡稱CATI系統(tǒng)),采取電腦隨機(jī)抽樣的方式,對本市年齡在16~65歲之間的居民,進(jìn)行了400個電話抽樣調(diào)查.并根據(jù)每個年齡段的抽查人數(shù)和該年齡段對博覽會總體印象感到滿意的人數(shù)繪制了下面的圖(1)和圖(1)(部分)根據(jù)上圖提供的信息回答下列問題:(1)被抽查的居民中,人數(shù)最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數(shù),并補(bǔ)全圖1.注:某年齡段的滿意率=該年齡段滿意人數(shù)÷該年齡段被抽查人數(shù)×100%.20.(8分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.21.(8分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點(diǎn)A處測得公路對面的點(diǎn)C與AE的夾角∠CAE=30°,沿著AE方向前進(jìn)15米到點(diǎn)B處測得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)22.(10分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時(shí)把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=

,cos37°=

,tan37°=

(1)求把手端點(diǎn)A到BD的距離;

(2)求CH的長.

23.(12分)(1)計(jì)算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.24.已知,如圖,在四邊形ABCD中,∠ADB=∠ACB,延長AD、BC相交于點(diǎn)E.求證:△ACE∽△BDE;BE?DC=AB?DE.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

由于其中一名學(xué)生想要知道自己能否進(jìn)入前3名,共有7名選手參加,故應(yīng)根據(jù)中位數(shù)的意義分析.【詳解】由于總共有7個人,且他們的成績各不相同,第4的成績是中位數(shù),要判斷是否進(jìn)入前3名,故應(yīng)知道中位數(shù)的多少.故選C.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.2、B【解析】

作DF⊥CA,交CA的延長線于點(diǎn)F,作DG⊥CB于點(diǎn)G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點(diǎn)G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.3、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn)得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn),∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識點(diǎn).4、D【解析】當(dāng)k=1時(shí),原方程不成立,故k≠1,當(dāng)k≠1時(shí),方程為一元二次方程.∵此方程有兩個實(shí)數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.5、C【解析】

根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.在確定n的值時(shí),看該數(shù)是大于或等于1還是小于1.當(dāng)該數(shù)大于或等于1時(shí),n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時(shí),-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點(diǎn)前的1個0).【詳解】67500一共5位,從而67500=6.75×104,故選C.6、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點(diǎn):角度的計(jì)算7、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點(diǎn)睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.8、D【解析】

由解析式可知該函數(shù)在時(shí)取得最小值0,拋物線開口向上,當(dāng)時(shí),y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減??;根據(jù)時(shí),函數(shù)的最小值為4可分如下三種情況:①若,時(shí),y取得最小值4;②若-1<h<3時(shí),當(dāng)x=h時(shí),y取得最小值為0,不是4;③若,當(dāng)x=3時(shí),y取得最小值4,分別列出關(guān)于h的方程求解即可.【詳解】解:∵當(dāng)x>h時(shí),y隨x的增大而增大,當(dāng)時(shí),y隨x的增大而減小,并且拋物線開口向上,

∴①若,當(dāng)時(shí),y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時(shí),當(dāng)x=h時(shí),y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當(dāng)x=3時(shí),y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關(guān)鍵.9、C【解析】

∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.【點(diǎn)睛】本題關(guān)鍵在于利用三角形全等,解題關(guān)鍵是將四邊形CDEF的周長進(jìn)行轉(zhuǎn)化.10、D【解析】

過C點(diǎn)作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點(diǎn)作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

利用直角三角形的性質(zhì),判定三角形相似,進(jìn)一步利用相似三角形的面積比等于相似比的性質(zhì)解決問題.【詳解】如圖,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,則S△ABD:S△ABC=1:4,∴AB:BC=1:1.12、或【解析】試題分析:AC===,因?yàn)榫匦味枷嗨?,且每相鄰兩個矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點(diǎn):1.相似多邊形的性質(zhì);2.勾股定理;3.規(guī)律型;4.矩形的性質(zhì);5.綜合題.13、(4,2),【解析】

由的橫坐標(biāo)是1,可得,利用兩個函數(shù)解析式求出點(diǎn)、的坐標(biāo),得出的長度以及第1個正方形的面積,求出的坐標(biāo);然后再求出的坐標(biāo),得出第2個正方形的面積,求出的坐標(biāo);再求出、的坐標(biāo),得出第3個正方形的面積;從而得出規(guī)律即可得到第n個正方形的面積.【詳解】解:點(diǎn)、、在直線上,的橫坐標(biāo)是1,

,

點(diǎn),,在直線上,

,,

,,

第1個正方形的面積為:;

,

,,,

第2個正方形的面積為:;

,,

第3個正方形的面積為:;

第n個正方形的面積為:.

故答案為,.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,正方形的性質(zhì)以及規(guī)律型中圖形的變化規(guī)律,解題的關(guān)鍵是找出規(guī)律本題難度適中,解決該題型題目時(shí),根據(jù)給定的條件求出第1、2、3個正方形的邊長,根據(jù)數(shù)據(jù)的變化找出變化規(guī)律是關(guān)鍵.14、.【解析】

利用規(guī)定的運(yùn)算方法,分別算得a1,a2,a3,a4…找出運(yùn)算結(jié)果的循環(huán)規(guī)律,利用規(guī)律解決問題.【詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【點(diǎn)睛】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關(guān)鍵在于掌握運(yùn)算法則找到規(guī)律.15、;答案見解析.【解析】

(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點(diǎn)D、E,取格點(diǎn)F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點(diǎn)P,點(diǎn)P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.16、65°【解析】

根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠3,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計(jì)算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【點(diǎn)睛】此題考查平行線的性質(zhì),解題關(guān)鍵在于利用同旁內(nèi)角互補(bǔ)求出∠3.三、解答題(共8題,共72分)17、(1);(2)(,1)(,1);(3)存在,,,,【解析】試題分析:(1)將x=-2代入y=-2x-1即可求得點(diǎn)B的坐標(biāo),根據(jù)拋物線過點(diǎn)A、O、B即可求出拋物線的方程.(2)根據(jù)題意,可知△ADP和△ADC的高相等,即點(diǎn)P縱坐標(biāo)的絕對值為1,所以點(diǎn)P的縱坐標(biāo)為,分別代入中求解,即可得到所有符合題意的點(diǎn)P的坐標(biāo).(3)由拋物線的解析式為,得頂點(diǎn)E(2,﹣1),對稱軸為x=2;點(diǎn)F是直線y=﹣2x﹣1與對稱軸x=2的交點(diǎn),求出F(2,﹣1),DF=1.又由A(4,0),根據(jù)勾股定理得.然后分4種情況求解.點(diǎn)睛:(1)首先求出點(diǎn)B的坐標(biāo)和m的值,然后利用待定系數(shù)法求出拋物線的解析式;(2)△ADP與△ADC有共同的底邊AD,因?yàn)槊娣e相等,所以AD邊上的高相等,即為1;從而得到點(diǎn)P的縱坐標(biāo)為1,再利用拋物線的解析式求出點(diǎn)P的縱坐標(biāo);(3)如解答圖所示,在點(diǎn)M的運(yùn)動過程中,依次出現(xiàn)四個菱形,注意不要漏解.針對每一個菱形,分別進(jìn)行計(jì)算,求出線段MF的長度,從而得到運(yùn)動時(shí)間t的值.18、(1)10;(2);(3)9環(huán)【解析】

(1)根據(jù)眾數(shù)的定義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),結(jié)合統(tǒng)計(jì)圖得到答案.(2)先求這組成績的平均數(shù),再求這組成績的方差;(3)先求原來7次成績的中位數(shù),再求第8次的射擊成績的最大環(huán)數(shù).【詳解】解:(1)在這7次射擊中,10環(huán)出現(xiàn)的次數(shù)最多,故這組成績的眾數(shù)是10;(2)嘉淇射擊成績的平均數(shù)為:,方差為:.(3)原來7次成績?yōu)?899101010,原來7次成績的中位數(shù)為9,當(dāng)?shù)?次射擊成績?yōu)?0時(shí),得到8次成績的中位數(shù)為9.5,當(dāng)?shù)?次射擊成績小于10時(shí),得到8次成績的中位數(shù)均為9,因此第8次的射擊成績的最大環(huán)數(shù)為9環(huán).【點(diǎn)睛】本題主要考查了折線統(tǒng)計(jì)圖和眾數(shù)、中位數(shù)、方差等知識.掌握眾數(shù)、中位數(shù)、方差以及平均數(shù)的定義是解題的關(guān)鍵.19、(1)11~30;(1)31~40歲年齡段的滿意人數(shù)為66人,圖見解析;【解析】

(1)取扇形統(tǒng)計(jì)圖中所占百分比最大的年齡段即可;(1)先求出總體感到滿意的總?cè)藬?shù),然后減去其它年齡段的人數(shù)即可,再補(bǔ)全條形圖.【詳解】(1)由扇形統(tǒng)計(jì)圖可得11~30歲的人數(shù)所占百分比最大為39%,所以,人數(shù)最多的年齡段是11~30歲;(1)根據(jù)題意,被調(diào)查的人中,總體印象感到滿意的有:400×83%=331人,31~40歲年齡段的滿意人數(shù)為:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,補(bǔ)全統(tǒng)計(jì)圖如圖.【點(diǎn)睛】本題考點(diǎn):條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.20、(1)見解析;(2)1【解析】

(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設(shè)BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點(diǎn)睛】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運(yùn)用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.21、公路的寬為20.5米.【解析】

作CD⊥AE,設(shè)CD=x米,由∠CBD=45°知BD=CD=x,根據(jù)tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過點(diǎn)C作CD⊥AE于點(diǎn)D,設(shè)公路的寬CD=x米,∵∠CBD=45°,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論