版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的一個零點在區(qū)間內,則實數(shù)a的取值范圍是()A. B. C. D.2.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.3.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.4.若函數(shù)在時取得最小值,則()A. B. C. D.5.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形6.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.07.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數(shù)學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種8.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.29.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.10.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.2711.設為非零實數(shù),且,則()A. B. C. D.12.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關于的方程在定義域上有四個不同的解,則實數(shù)的取值范圍是_______.14.已知函數(shù),若方程的解為,(),則_______;_______.15.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.16.已知等比數(shù)列{an}的前n項和為Sn,若a2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.18.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.19.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.20.(12分)已知.(1)已知關于的不等式有實數(shù)解,求的取值范圍;(2)求不等式的解集.21.(12分)在△ABC中,分別為三個內角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.22.(10分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
顯然函數(shù)在區(qū)間內連續(xù),由的一個零點在區(qū)間內,則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內連續(xù),因為的一個零點在區(qū)間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.2、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.3、B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.4、D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.5、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.6、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關系數(shù)的性質,可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題.7、C【解析】
分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數(shù),即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結果,屬于??碱}型.8、B【解析】
根據(jù)可導函數(shù)在極值點處的導數(shù)值為,得出,再由等比數(shù)列的性質可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【點睛】本題主要考查了等比數(shù)列下標和性質以應用,屬于中檔題.9、C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.10、D【解析】
設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.11、C【解析】
取,計算知錯誤,根據(jù)不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.12、B【解析】
求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)的圖象有兩個交點,運用參變分離和構造函數(shù),進而借助導數(shù)分析單調性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個交點,聯(lián)立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數(shù)解決方程的根的問題,還考查了等價轉化思想與函數(shù)對稱性的應用,屬于難題.14、【解析】
求出在上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導公式,考查了同角三角函數(shù)的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.15、【解析】
取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數(shù)使得,,,,,,故答案為:.【點睛】本題考查了平面向量數(shù)量積的性質及其運算,屬中檔題.16、-2【解析】試題分析:∵a2考點:等比數(shù)列性質及求和公式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)先利用導數(shù)的四則運算法則和導數(shù)公式求出,再由函數(shù)的導數(shù)可知,函數(shù)在上單調遞增,在上單調遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉化為,構造函數(shù),利用導數(shù)討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數(shù)是奇函數(shù).當時,,,這時,又函數(shù)是奇函數(shù),所以當時,.綜上,當時,函數(shù)單調遞增;當時,函數(shù)單調遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區(qū)間上有無窮多個零點,設最小的零點為,則當時,,因此在上單調遞增.,所以.于是,當時,,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導數(shù)的四則運算法則和導數(shù)公式的應用,以及利用導數(shù)研究函數(shù)的單調性和最值,涉及分類討論思想和放縮法的應用,難度較大,意在考查學生的數(shù)學建模能力,數(shù)學運算能力和邏輯推理能力,屬于較難題.18、(1)(2)定值為0.【解析】
(1)根據(jù)直線方程求焦點坐標,即得c,再根據(jù)離心率得,(2)先設直線方程以及各點坐標,化簡,再聯(lián)立直線方程與橢圓方程,利用韋達定理代入化簡得結果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關系,考查綜合分析求解能力,屬中檔題.19、(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【解析】
(1)求出導函數(shù),并且解出它的零點x=,再分區(qū)間討論導數(shù)的正負,即可得到函數(shù)f(x)的單調區(qū)間;
(2)分三種情況加以討論,結合函數(shù)的單調性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因為,令,可得;
當時,;當時,,綜上所述:可知函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為當,即時,函數(shù)在區(qū)間上是減函數(shù),
的最小值是當,即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當,即時,函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當時,的最小值是;
當時,的最小值為綜上所述,結論為當時,函數(shù)的最小值是;
當時,函數(shù)的最小值是.【點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解方程求出函數(shù)定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小20、(1);(2).【解析】
(1)依據(jù)能成立問題知,,然后利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國智慧水務行業(yè)發(fā)展創(chuàng)新模式及投資規(guī)劃分析報告
- 2024-2030年中國旅游行業(yè)商業(yè)模式分析及投資規(guī)劃研究報告
- 辦公室新冠防疫消毒流程方案
- 海上工程腳手架應用方案
- 青島飛洋職業(yè)技術學院《GNSS測量原理及其應用》2023-2024學年第一學期期末試卷
- 黔南民族職業(yè)技術學院《光分析化學》2023-2024學年第一學期期末試卷
- 買賣協(xié)議書2000字
- 中考政治教材知識梳理七下課時6一起成長(第三單元)
- 房屋與室內環(huán)境檢測技術-模塊講解課件講解
- 2022-2023學年天津二十五中高三(上)期末語文試卷
- 24節(jié)氣中的傳統(tǒng)服飾與飾品
- 地彈簧行業(yè)分析
- 如何發(fā)揮采購在公司高質量發(fā)展中作用
- 民事糾紛及其解決機制課件
- 美術高考總結匯報
- 北宋詞之臨江仙夜歸臨皋【宋】蘇軾課件
- 監(jiān)理質量評估報告
- 《中國封建社會》課件
- 藥物代謝動力學-中國藥科大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 血液科護士的營養(yǎng)與膳食指導
- 建筑與建材行業(yè)設計與工程技術培訓資料
評論
0/150
提交評論