版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),則()A. B. C. D.22.已知定義在上的奇函數(shù),其導函數(shù)為,當時,恒有.則不等式的解集為().A. B.C.或 D.或3.設是虛數(shù)單位,則()A. B. C. D.4.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內部隨機取一個點,則該點不落在任何一個小正方形內的概率是()A. B. C. D.5.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關于直線對稱,則函數(shù)在上的值域是()A. B. C. D.6.我國古代數(shù)學家秦九韶在《數(shù)書九章》中記述了“三斜求積術”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.7.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.9.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于10.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限11.函數(shù)f(x)=2x-3A.[32C.[3212.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.在各項均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.14.在中,角A,B,C的對邊分別為a,b,c,且,則________.15.已知復數(shù)滿足(為虛數(shù)單位),則復數(shù)的實部為____________.16.將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.18.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調區(qū)間;(2)設g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.19.(12分)已知函數(shù),,(1)討論的單調性;(2)若在定義域內有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.20.(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當年考核優(yōu)秀,現(xiàn)獲得該公司年的相關數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺數(shù)(萬臺)2345671011該產(chǎn)品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計算結果:,,,,注:年返修率=(1)從該公司年的相關數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學期望;(2)根據(jù)散點圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關于年生產(chǎn)臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.21.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.22.(10分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)復數(shù)模的性質即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質,屬于容易題.2、D【解析】
先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點睛】此題考查根據(jù)導函數(shù)構造原函數(shù),偶函數(shù)解不等式等知識點,屬于較難題目.3、A【解析】
利用復數(shù)的乘法運算可求得結果.【詳解】由復數(shù)的乘法法則得.故選:A.【點睛】本題考查復數(shù)的乘法運算,考查計算能力,屬于基礎題.4、D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.5、D【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結果.【詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.6、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.7、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.8、D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.9、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.10、D【解析】
設,由,得,利用復數(shù)相等建立方程組即可.【詳解】設,則,所以,解得,故,復數(shù)在復平面內對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.11、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx12、D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用等差中項的性質和等比數(shù)列通項公式得到關于的方程,解方程求出代入等比數(shù)列通項公式即可.【詳解】因為,成等差數(shù)列,所以,由等比數(shù)列通項公式得,,所以,解得或,因為,所以,所以等比數(shù)列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數(shù)列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數(shù)列通項公式是求解本題的關鍵;屬于中檔題.14、【解析】
利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎題.15、【解析】
利用復數(shù)的概念與復數(shù)的除法運算計算即可得到答案.【詳解】,所以復數(shù)的實部為2.故答案為:2【點睛】本題考查復數(shù)的除法運算,考查學生的基本計算能力,是一道基礎題.16、【解析】
根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【詳解】函數(shù)的圖像向右平移個單位得,,,.故答案為:.【點睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.18、(1)單調遞減區(qū)間為(0,1),單調遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】
(1)當a=2時,求出,求解,即可得出結論;(2)函數(shù)在上有兩個零點等價于a=2x在上有兩解,構造函數(shù),,利用導數(shù),可分析求得實數(shù)a的取值范圍.【詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調遞減;當時,單調遞增;故函數(shù)的單調遞減區(qū)間為,單調遞增區(qū)間為,(2)設,函數(shù)g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區(qū)間上單調遞增,又,所以當時,有,即,當時,有,即,所以在區(qū)間上單調遞減,在區(qū)間上單調遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數(shù)a的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性極值與最值、等價轉化思想以及數(shù)形結合思想,考查邏輯推理、數(shù)學計算能力,屬于中檔題.19、(1)時,在上單調遞增,時,在上遞減,在上遞增.(2).【解析】
(1)求出導函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結論.【詳解】(1)函數(shù)定義域是,,當時,,單調遞增;時,令得,時,,遞減,時,,遞增,綜上所述,時,在上單調遞增,時,在上遞減,在上遞增.(2)易知,由函數(shù)單調性,若有唯一零點,則或.當時,,,從而只需時,恒成立,即,令,,在上遞減,在上遞增,∴,從而.時,,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點睛】本題考查用導數(shù)研究函數(shù)的單調性,考查函數(shù)零點個數(shù)與不等式恒成立問題,解題關鍵在于轉化,不等式恒成立問題通常轉化為求函數(shù)的最值.這又可通過導數(shù)求解.20、(1)見解析;(2)【解析】
(1)先判斷得到隨機變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計算得到相應的概率,進而得到分布列和期望.(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程.【詳解】(1)由數(shù)據(jù)可知,,,,,五個年份考核優(yōu)秀.由題意的所有可能取值為,,,,,,,.故的分布列為:所以.(2)因為,所以去掉年的數(shù)據(jù)后不影響的值,所以.又去掉年的數(shù)據(jù)之后,所以,從而回歸方程為:.【點睛】求線性回歸方程時要涉及到大量的計算,所以在解題時要注意運算的合理性和正確性,對于題目中給出的中間數(shù)據(jù)要合理利用.本題考查概率和統(tǒng)計的結合,這也是高考中常出現(xiàn)的題型,屬于基礎題.21、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年生態(tài)農(nóng)業(yè)園區(qū)場地合作租賃服務協(xié)議2篇
- 二零二五年度婚后財產(chǎn)管理及婚姻風險防范協(xié)議書3篇
- 小學數(shù)學競賽的智能化輔導平臺研究
- 二零二五年度碳排放權交易合同:碳排放配額的買賣與交易細節(jié)
- 2024版汽車共同運營合作合同樣本版B版
- 2025年度社區(qū)食堂運營與管理合同3篇
- 2024版現(xiàn)代化港口建設施工協(xié)議版B版
- 二零二五年度環(huán)保技術引進與推廣合同3篇
- 二零二五年度教育機構合作合同終止的多重教育法律風險
- 二零二五年度房屋租賃保險配套服務合同
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 2023年售前工程師年度總結及來年計劃
- 連續(xù)梁施工安全培訓:掛籃施工及安全控制
- 儲運車間裝卸車和儲罐安全操作培訓
- 洞庭湖觀鳥旅游發(fā)展現(xiàn)狀及對策
- 土壤與肥料學課件
- 供應商物料質量問題賠償協(xié)議(中文)
- 公共廁所(預算書)
- 《豬肉分割及介紹》PPT課件.ppt
- 集團公司員工宿舍管理辦法(正式版)
- 康復治療學專業(yè)畢業(yè)生的培養(yǎng)與就業(yè)分析
評論
0/150
提交評論