2023屆遼寧省部分重點高中高三下第一次測試數(shù)學(xué)試題含解析_第1頁
2023屆遼寧省部分重點高中高三下第一次測試數(shù)學(xué)試題含解析_第2頁
2023屆遼寧省部分重點高中高三下第一次測試數(shù)學(xué)試題含解析_第3頁
2023屆遼寧省部分重點高中高三下第一次測試數(shù)學(xué)試題含解析_第4頁
2023屆遼寧省部分重點高中高三下第一次測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.2.以,為直徑的圓的方程是A. B.C. D.3.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.74.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進(jìn)行義務(wù)巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種5.已知,且,則在方向上的投影為()A. B. C. D.6.已知復(fù)數(shù),則的虛部為()A. B. C. D.17.已知是虛數(shù)單位,若,則()A. B.2 C. D.108.已知雙曲線的左,右焦點分別為,O為坐標(biāo)原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.9.已知復(fù)數(shù),,則()A. B. C. D.10.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.11.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.5050二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.學(xué)校藝術(shù)節(jié)對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學(xué)中有且只有兩位說的話是對的,則獲得一等獎的作品是______.15.在中,內(nèi)角的對邊分別是,若,,則____.16.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當(dāng)x<0時,研究函數(shù)F(x)=h(x)﹣g(x)的零點個數(shù);(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).18.(12分)已知正實數(shù)滿足.(1)求的最小值.(2)證明:19.(12分)設(shè)為坐標(biāo)原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設(shè)過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.20.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點是函數(shù)圖象的一個對稱中心,且,求面積的最大值.21.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.22.(10分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用正態(tài)分布密度曲線的對稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.2、A【解析】

設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點,根據(jù)中點坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.3、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時退出,故選B.4、B【解析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計算即可.【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于??碱}型.5、C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.6、C【解析】

先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點睛】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.7、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.8、D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.9、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負(fù)問題.10、A【解析】

首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點.由于“當(dāng)時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11、C【解析】

依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.12、C【解析】

因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、B【解析】

首先根據(jù)“學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎”,故假設(shè)分別為一等獎,然后判斷甲、乙、丙、丁四位同學(xué)的說法的正確性,即可得出結(jié)果.【詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【點睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設(shè)為一等獎并通過是否滿足題目條件來判斷其是否正確.15、【解析】

由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.16、【解析】

觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析;(3)見解析【解析】

(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導(dǎo)數(shù),討論a>1和a≤1,判斷導(dǎo)數(shù)的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導(dǎo)數(shù)和二階導(dǎo)數(shù),判斷F'(x)的單調(diào)性,討論a≤﹣1,a>﹣1,F(xiàn)(x)的單調(diào)性和零點個數(shù);(3)由(1)知,當(dāng)a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當(dāng)a=﹣1時,對x<0恒成立,令,結(jié)合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時,H'(x)→+∞,則?x0∈(0,+∞),使H'(x0)=0進(jìn)而H(x)在[0,x0)遞減,在(x0,+∞)遞增,所以當(dāng)x∈(0,x0)時H(x)<H(0)=0,即當(dāng)x∈(0,x0)時,f(x)>h(x),不滿足題意,舍去;綜合①,②知a的取值范圍為(﹣∞,1].(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,則F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,所以F'(x)<F'(0)=1+a,且x→﹣∞時,F(xiàn)'(x)→﹣∞;①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(xiàn)(x)在(﹣∞,0)無零點;②若1+a>0,即a>﹣1,則使,進(jìn)而F(x)在遞減,在遞增,,且x→﹣∞時,,F(xiàn)(x)在上有一個零點,在無零點,故F(x)在(﹣∞,0)有一個零點.綜合①②,當(dāng)a≤﹣1時無零點;當(dāng)a>﹣1時有一個零點.(Ⅲ)證明:由(Ⅰ)知,當(dāng)a=1時,ex>1+ln(x+1)對x>0恒成立,令,則即;由(Ⅱ)知,當(dāng)a=﹣1時,對x<0恒成立,令,則,所以;故有.【點睛】本題考查導(dǎo)數(shù)的運用:求單調(diào)區(qū)間,考查函數(shù)零點存在定理的運用,考查分類討論思想方法,以及運算能力和推理能力,屬于難題.對于函數(shù)的零點問題,它和方程的根的問題,和兩個函數(shù)的交點問題是同一個問題,可以互相轉(zhuǎn)化;在轉(zhuǎn)化為兩個函數(shù)交點時,如果是一個常函數(shù)一個含自變量的函數(shù),注意讓含有自變量的函數(shù)式子盡量簡單一些.18、(1);(2)見解析【解析】

(1)利用乘“1”法,結(jié)合基本不等式求得結(jié)果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當(dāng)且僅當(dāng),即時等號成立),所以(2)證明:因為,所以故(當(dāng)且僅當(dāng)時,等號成立)【點睛】本題考查了基本不等式的應(yīng)用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.19、(1);(2)見解析【解析】

(1)根據(jù)點到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運算可得,即可證明.【詳解】(1)左頂點A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過點N且垂直于OP的直線過橢圓C的右焦點F.【點睛】本題考查了橢圓方程的求法,直線和橢圓的關(guān)系,向量的運算,考查了運算求解能力和轉(zhuǎn)化與化歸能力,屬于中檔題.20、(Ⅰ)3;(Ⅱ).【解析】

(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡即可求得;(Ⅱ)由(Ⅰ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論