版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.2.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.3.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.4.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.6.已知雙曲線的左,右焦點分別為,O為坐標(biāo)原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.7.已知集合,,則A. B.C. D.8.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件9.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.10.若實數(shù)、滿足,則的最小值是()A. B. C. D.11.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β12.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.14.已知是拋物線上一點,是圓關(guān)于直線對稱的曲線上任意一點,則的最小值為________.15.(x+y)(2x-y)5的展開式中x3y3的系數(shù)為________.16.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點的個數(shù).18.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.19.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.20.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.21.(12分)設(shè)為實數(shù),已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.22.(10分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當(dāng)且僅當(dāng)時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計算能力,屬于基礎(chǔ)題型.2、B【解析】
因為時針經(jīng)過2小時相當(dāng)于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負角,所以經(jīng)過2小時,時針?biāo)D(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎(chǔ)題.3、A【解析】
求出拋物線的焦點坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,
過點P作PM垂直于準線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時,,當(dāng)時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計算能力,屬于中檔題.4、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運算,邏輯推理能力,屬于基礎(chǔ)題.5、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.7、D【解析】
因為,,所以,,故選D.8、D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.9、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.10、D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.11、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關(guān)知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質(zhì)判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.12、C【解析】
分四類情況進行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.二、填空題:本題共4小題,每小題5分,共20分。13、156【解析】
先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.14、【解析】
由題意求出圓的對稱圓的圓心坐標(biāo),求出對稱圓的圓坐標(biāo)到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關(guān)動點距離的最小值問題,涉及到的知識點有點關(guān)于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.15、40【解析】
先求出的展開式的通項,再求出即得解.【詳解】設(shè)的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數(shù)為40.故答案為:40【點睛】本題主要考查二項式定理求指定項的系數(shù),意在考查學(xué)生對這些知識的理解掌握水平.16、1【解析】
按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運用知識的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】
(1)求導(dǎo)后分析導(dǎo)函數(shù)的正負再判斷單調(diào)性即可.(2),有零點等價于方程實數(shù)根,再換元將原方程轉(zhuǎn)化為,再求導(dǎo)分析的圖像數(shù)形結(jié)合求解即可.【詳解】(1)的定義域為,,當(dāng)時,,所以在單調(diào)遞減;當(dāng)時,,所以在單調(diào)遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點等價于方程實數(shù)根,令則原方程轉(zhuǎn)化為,令,.令,,∴,,,,,當(dāng)時,,當(dāng)時,.如圖可知①當(dāng)時,有唯一零點,即有唯一零點;②當(dāng)時,有兩個零點,即有兩個零點;③當(dāng)時,有唯一零點,即有唯一零點;④時,此時無零點,即此時無零點.【點睛】本題主要考查了利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性的方法,同時也考查了利用導(dǎo)數(shù)分析函數(shù)零點的問題,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點,連結(jié),在矩形中,點為的中點,又,故,,又,平面,所以平面,又平面,所以平面平面.19、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過兩次檢測后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關(guān)系可用線性回歸模型擬合;(2)藥品的每類劑型經(jīng)過兩次檢測后合格的概率分別為,,,由題意,,.【點睛】本題考查相關(guān)系數(shù)的求解,考查二項分布的期望,是中檔題.20、(1)見解析(2)2【解析】
(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進而求解.【詳解】(1)當(dāng)時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時,;當(dāng)時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當(dāng)或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當(dāng)即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時,,故,單調(diào)遞減,不符合題意;③若,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,所以,由,得,設(shè),則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導(dǎo)函數(shù)研究函數(shù)的零點問題,考查利用導(dǎo)函數(shù)求最值,考查運算能力與分類討論思想.21、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時,因為,當(dāng)時,;當(dāng)時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當(dāng)時,,所以,所以,所以當(dāng)時,函數(shù)的值域為.所以,存在,使得,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版:供應(yīng)鏈管理服務(wù)合同
- 2024年特種門采購合同范本3篇
- 2024年某企業(yè)關(guān)于知識產(chǎn)權(quán)許可的合同
- 馬鞍山職業(yè)技術(shù)學(xué)院《安裝工程計量計價實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年文化產(chǎn)業(yè)融資借款合同范本大全6篇
- 2025年貨運從業(yè)資格證模擬試題題庫及答案解析
- 2025年貨運從業(yè)資格證考試題目和答案
- 2025年昆明考貨運從業(yè)資格證考試題目
- 2024事業(yè)單位聘用合同教師(附教育質(zhì)量監(jiān)控與管理)3篇
- 2025建筑工程民工勞動合同范文
- 成都錦城學(xué)院《操作系統(tǒng)與nux管理》2022-2023學(xué)年期末試卷
- 《弧弦圓心角》說課稿課件
- 中職班級建設(shè)三年規(guī)劃方案
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 2024年中級安全工程師《(建筑施工)安全生產(chǎn)專業(yè)實務(wù)》考試題庫(含答案)
- 弘揚抗戰(zhàn)精神課程設(shè)計
- 康復(fù)護理完整版
- 制氫技術(shù)與工藝 課件 第7章 氨制氫
- 12S4消防工程標(biāo)準圖集
- 天津市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 《計算機網(wǎng)絡(luò)技術(shù)》課程教案(完整版)
評論
0/150
提交評論