版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.2.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構成這個正方體的表面展開圖的概率是()A. B. C. D.3.在如圖所示的數(shù)軸上,點B與點C關于點A對稱,A、B兩點對應的實數(shù)分別是和﹣1,則點C所對應的實數(shù)是()A.1+ B.2+ C.2﹣1 D.2+14.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y35.關于x的不等式x-b>0恰有兩個負整數(shù)解,則b的取值范圍是A. B. C. D.6.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=27.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a≥ B.a> C.a≤ D.a>8.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.9.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數(shù)是()A.75° B.60° C.45° D.30°10.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=二、填空題(共7小題,每小題3分,滿分21分)11.已知反比例函數(shù),在其圖象所在的每個象限內,的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.12.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A或B或C).13.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.14.在Rt△ABC內有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.15.請寫出一個開口向下,并且與y軸交于點(0,1)的拋物線的表達式_________16.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.17.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當點B的移動距離為時,四邊ABC1D1為矩形;當點B的移動距離為時,四邊形ABC1D1為菱形.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.19.(5分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.20.(8分)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=kx的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=12,OB=4,OE=2(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.21.(10分)在平面直角坐標系xOy中,將拋物線(m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.(1)直接寫出點A的坐標;(2)過點(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點.①當∠BAC=90°時.求拋物線G2的表達式;②若60°<∠BAC<120°,直接寫出m的取值范圍.22.(10分)作圖題:在∠ABC內找一點P,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)23.(12分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.24.(14分)如圖,AB=AD,AC=AE,BC=DE,點E在BC上.求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、D【解析】
由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關鍵.3、D【解析】
設點C所對應的實數(shù)是x.根據(jù)中心對稱的性質,對稱點到對稱中心的距離相等,則有,解得.故選D.4、A【解析】
作出反比例函數(shù)的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.5、A【解析】
根據(jù)題意可得不等式恰好有兩個負整數(shù)解,即-1和-2,再結合不等式計算即可.【詳解】根據(jù)x的不等式x-b>0恰有兩個負整數(shù)解,可得x的負整數(shù)解為-1和-2綜合上述可得故選A.【點睛】本題主要考查不等式的非整數(shù)解,關鍵在于非整數(shù)解的確定.6、A【解析】
根據(jù)二次根式的性質對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.7、B【解析】
方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.8、B【解析】試題分析:結合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.9、C【解析】
根據(jù)直角三角形兩銳角互余即可解決問題.【詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數(shù)=90°﹣45°=45°,故選C.【點睛】本題考查直角三角形的性質,記住直角三角形兩銳角互余是解題的關鍵.10、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.
y=是組合函數(shù),故此選項錯誤.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
直接利用反比例函數(shù)的增減性進而得出圖象的分布.【詳解】∵反比例函數(shù)y(k≠0),在其圖象所在的每個象限內,y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【點睛】本題考查了反比例的性質,正確掌握反比例函數(shù)圖象的分布規(guī)律是解題的關鍵.12、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率13、【解析】
解:設E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為14、1【解析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點睛:本題主要考查相似三角形的判定和性質、正方形的性質,解題的關鍵在于找到相似三角形,用x的表達式表示出對應邊是解題的關鍵.15、(答案不唯一)【解析】
根據(jù)二次函數(shù)的性質,拋物線開口向下a<0,與y軸交點的縱坐標即為常數(shù)項,然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(0,1)∴二次函數(shù)的一般表達式中,a<0,c=1,∴二次函數(shù)表達式可以為:(答案不唯一).【點睛】本題考查二次函數(shù)的性質,掌握開口方向、與y軸的交點與二次函數(shù)二次項系數(shù)、常數(shù)項的關系是解題的關鍵.16、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.17、,.【解析】試題分析:當點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當點B的移動距離為時,D、B1兩點重合,根據(jù)對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為矩形;當四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質.三、解答題(共7小題,滿分69分)18、,.【解析】
先把小括號內的通分,按照分式的減法和分式除法法則進行化簡,再把字母的值代入運算即可.【詳解】解:原式當時原式【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.19、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標為(,)或(,);②<t<.【解析】
(1)設拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關系,即可解答(2)先求出當x=0時,C的坐標,設直線AC的解析式為y=px+q,把A,C的坐標代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當x=0時,y=﹣x2+2x+3=3,則C(0,3),設直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點C作AC的垂線交拋物線于另一點P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時P1點坐標為(,);過點A作AC的垂線交拋物線于另一點P2,直線AP2的解析式可設為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時P2點坐標為(,),綜上所述,符合條件的點P的坐標為(,)或(,);②<t<.【點睛】此題考查二次函數(shù)綜合題,解題關鍵在于把已知點代入解析式求值和作輔助線.20、(1)y=-12x+2,y=-6x【解析】試題分析:(1)根據(jù)已知條件求出A、B、C點坐標,用待定系數(shù)法求出直線AB和反比例函數(shù)的解析式;(2)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點D的坐標,從而根據(jù)三角形面積公式求解;(3)根據(jù)函數(shù)的圖象和交點坐標即可求解.試題解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x軸于點E,tan∠ABO=OAOB=CEBE=12,∴OA=2,CE=3,∴點A的坐標為(0,2)、點B∵一次函數(shù)y=ax+b的圖象與x,y軸交于B,A兩點,∴4a+b=0b=2,解得:a=-故直線AB的解析式為y=-1∵反比例函數(shù)y=kx的圖象過C,∴3=k-2,∴k(2)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得:y=-12x+2y=-6x,可得交點D的坐標為(1,﹣1),則△(3)由圖象得,一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍:x<﹣2或0<x<1.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.21、(1)(,2);(2)①y=(x-)2+2;②【解析】
(1)先求出平移后是拋物線G2的函數(shù)解析式,即可求得點A的坐標;(2)①由(1)可知G2的表達式,首先求出AD的值,利用等腰直角的性質得出BD=AD=,從而求出點B的坐標,代入即可得解;②分別求出當∠BAC=60°時,當∠BAC=120°時m的值,即可得出m的取值范圍.【詳解】(1)∵將拋物線G1:y=mx2+2(m≠0)向右平移個單位長度后得到拋物線G2,∴拋物線G2:y=m(x-)2+2,∵點A是拋物線G2的頂點.∴點A的坐標為(,2).(2)①設拋物線對稱軸與直線l交于點D,如圖1所示.∵點A是拋物線頂點,∴AB=AC.∵∠BAC=90°,∴△ABC為等腰直角三角形,∴CD=AD=,∴點C的坐標為(2,).∵點C在拋物線G2上,∴=m(2-)2+2,解得:.②依照題意畫出圖形,如圖2所示.同理:當∠BAC=60°時,點C的坐標為(+1,);當∠BAC=120°時,點C的坐標為(+3,).∵60°<∠BAC<120°,∴點(+1,)在拋物線G2下方,點(+3,)在拋物線G2上方,∴,解得:.【點睛】此題考查平移中的坐標變換,二次函數(shù)的性質,待定系數(shù)法求二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年體育賽事贊助合同詳細條款與權益分配3篇
- 2025年度跨國公司美金貸款合同
- 二零二五年度水稻種植基地建設合同
- 2025版離婚協(xié)議書范本:房產買賣合同分割及處理細則4篇
- 2025年度脫硫石膏復合材料銷售協(xié)議3篇
- 2025年冰箱洗衣機節(jié)能補貼項目合作協(xié)議3篇
- 2025年度離婚協(xié)議書:陳飛與劉婷離婚財產分割及子女撫養(yǎng)費協(xié)議4篇
- 二零二五年度老舊小區(qū)消防隱患排查與整改承包合同2篇
- 二零二四云存儲服務與云原生應用部署合同3篇
- 貨物運輸協(xié)議
- ICU常見藥物課件
- CNAS實驗室評審不符合項整改報告
- 農民工考勤表(模板)
- 承臺混凝土施工技術交底
- 臥床患者更換床單-軸線翻身
- 計量基礎知識培訓教材201309
- 中考英語 短文填詞、選詞填空練習
- 一汽集團及各合資公司組織架構
- 阿特拉斯基本擰緊技術ppt課件
- 初一至初三數(shù)學全部知識點
- 新課程理念下的班主任工作藝術
評論
0/150
提交評論