2023屆湖南省益陽地區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
2023屆湖南省益陽地區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
2023屆湖南省益陽地區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
2023屆湖南省益陽地區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
2023屆湖南省益陽地區(qū)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD的邊長為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是()A. B. C. D.2.如圖,⊙O中,弦BC與半徑OA相交于點(diǎn)D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°3.商場將某種商品按原價(jià)的8折出售,仍可獲利20元.已知這種商品的進(jìn)價(jià)為140元,那么這種商品的原價(jià)是()A.160元B.180元C.200元D.220元4.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點(diǎn),則DG的長為()A.6 B.5 C.4 D.35.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.6.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直7.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°8.如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.9.四個(gè)有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣310.下列計(jì)算正確的是A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若a﹣3有平方根,則實(shí)數(shù)a的取值范圍是_____.12.如圖,AB為⊙0的弦,AB=6,點(diǎn)C是⊙0上的一個(gè)動(dòng)點(diǎn),且∠ACB=45°,若點(diǎn)M、N分別是AB、BC的中點(diǎn),則MN長的最大值是______________.13.在平面直角坐標(biāo)系xOy中,若干個(gè)半徑為1個(gè)單位長度,圓心角是的扇形按圖中的方式擺放,動(dòng)點(diǎn)K從原點(diǎn)O出發(fā),沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運(yùn)動(dòng),若點(diǎn)K在線段上運(yùn)動(dòng)的速度為每秒1個(gè)單位長度,在弧線上運(yùn)動(dòng)的速度為每秒個(gè)單位長度,設(shè)第n秒運(yùn)動(dòng)到點(diǎn)K,為自然數(shù),則的坐標(biāo)是____,的坐標(biāo)是____14.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.15.如圖,點(diǎn)P的坐標(biāo)為(2,2),點(diǎn)A,B分別在x軸,y軸的正半軸上運(yùn)動(dòng),且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時(shí)四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)16.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為__度.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,直線y1=2x+b與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線(x>0)交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,點(diǎn)B的坐標(biāo)為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達(dá)式;(2)當(dāng)x>0時(shí),直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點(diǎn)E,交雙曲線(x>0)于點(diǎn)F,求△CEF的面積.18.(8分)如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為1.當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.19.(8分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).求直線AB的解析式和點(diǎn)B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).20.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點(diǎn)F,連接ED,且,若,,求CF的長度.21.(8分)計(jì)算:()﹣2﹣+(﹣2)0+|2﹣|22.(10分)在下列的網(wǎng)格圖中.每個(gè)小正方形的邊長均為1個(gè)單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△AB1C1;(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).23.(12分)某工廠計(jì)劃在規(guī)定時(shí)間內(nèi)生產(chǎn)24000個(gè)零件,若每天比原計(jì)劃多生產(chǎn)30個(gè)零件,則在規(guī)定時(shí)間內(nèi)可以多生產(chǎn)300個(gè)零件.求原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù)和規(guī)定的天數(shù).為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計(jì)劃正常生產(chǎn)的同時(shí),引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個(gè)數(shù)比20個(gè)工人原計(jì)劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個(gè)零件的生產(chǎn)任務(wù),求原計(jì)劃安排的工人人數(shù).24.如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時(shí),P點(diǎn)在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項(xiàng)錯(cuò)誤;②1<x≤2時(shí),P點(diǎn)在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項(xiàng)錯(cuò)誤;③2<x≤3時(shí),P點(diǎn)在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項(xiàng)錯(cuò)誤.故選C.考點(diǎn):動(dòng)點(diǎn)問題的函數(shù)圖象.2、D【解析】分析:直接利用三角形外角的性質(zhì)以及鄰補(bǔ)角的關(guān)系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內(nèi)角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點(diǎn)睛:此題主要考查了圓周角定理以及三角形內(nèi)角和定理等知識(shí),正確得出∠AOC度數(shù)是解題關(guān)鍵.3、C【解析】

利用打折是在標(biāo)價(jià)的基礎(chǔ)之上,利潤是在進(jìn)價(jià)的基礎(chǔ)上,進(jìn)而得出等式求出即可.【詳解】解:設(shè)原價(jià)為x元,根據(jù)題意可得:80%x=140+20,解得:x=1.所以該商品的原價(jià)為1元;故選:C.【點(diǎn)睛】此題主要考查了一元一次方程的應(yīng)用,根據(jù)題意列出方程是解決問題的關(guān)鍵.4、C【解析】

連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因?yàn)镈是EF中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點(diǎn)∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點(diǎn),∴,在中,,故選C.【點(diǎn)睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關(guān)鍵.5、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點(diǎn):D.6、C【解析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯(cuò)誤,例如對角線互相垂直的等腰梯形;B、錯(cuò)誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯(cuò)誤,垂直于同一直線的兩條直線平行.故選C.7、D【解析】

如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運(yùn)用,解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ).解決問題的關(guān)鍵是作平行線.8、B【解析】試題解析:如圖所示:分兩種情況進(jìn)行討論:當(dāng)時(shí),拋物線經(jīng)過點(diǎn)時(shí),拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當(dāng)時(shí),拋物線經(jīng)過點(diǎn)時(shí),拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點(diǎn)睛:二次函數(shù)二次項(xiàng)系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.9、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.10、B【解析】試題分析:根據(jù)合并同類項(xiàng)的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點(diǎn)睛:此題主要考查了整式的混合運(yùn)算,解題關(guān)鍵是靈活應(yīng)用合并同類項(xiàng)法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進(jìn)行計(jì)算.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、a≥1.【解析】

根據(jù)平方根的定義列出不等式計(jì)算即可.【詳解】根據(jù)題意,得解得:故答案為【點(diǎn)睛】考查平方根的定義,正數(shù)有兩個(gè)平方根,它們互為相反數(shù),0的平方根是0,負(fù)數(shù)沒有平方根.12、3【解析】

根據(jù)中位線定理得到MN的最大時(shí),AC最大,當(dāng)AC最大時(shí)是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因?yàn)辄c(diǎn)M、N分別是AB、BC的中點(diǎn),由三角形的中位線可知:MN=AC,所以當(dāng)AC最大為直徑時(shí),MN最大.這時(shí)∠B=90°又因?yàn)椤螦CB=45°,AB=6解得AC=6MN長的最大值是3.故答案為:3.【點(diǎn)睛】本題考查了三角形的中位線定理、等腰直角三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是了解當(dāng)什么時(shí)候MN的值最大,難度不大.13、【解析】

設(shè)第n秒運(yùn)動(dòng)到Kn(n為自然數(shù))點(diǎn),根據(jù)點(diǎn)K的運(yùn)動(dòng)規(guī)律找出部分Kn點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此規(guī)律即可得出結(jié)論.【詳解】設(shè)第n秒運(yùn)動(dòng)到Kn(n為自然數(shù))點(diǎn),觀察,發(fā)現(xiàn)規(guī)律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018為(1009,0).故答案為:(),(1009,0).【點(diǎn)睛】本題考查了規(guī)律型中的點(diǎn)的坐標(biāo),解題的關(guān)鍵是找出變化規(guī)律,本題屬于中檔題,解決該題型題目時(shí),根據(jù)運(yùn)動(dòng)的規(guī)律找出點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)的變化找出坐標(biāo)變化的規(guī)律是關(guān)鍵.14、3.【解析】

先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設(shè)AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點(diǎn)睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問題時(shí)需要將已知角的三角函數(shù)、已知邊、未知邊,轉(zhuǎn)換到同一直角三角形中,然后解決問題.15、①②【解析】

過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進(jìn)行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時(shí),OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N

∵P(1,1),

∴PN=PM=1.

∵x軸⊥y軸,

∴∠MON=∠PNO=∠PMO=90°,

∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPA=∠APB=90°,

∴∠MPA=∠NPB.

∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,

∴△MPA≌△NPB,

∴PA=PB,故①正確.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

當(dāng)OA=OB時(shí),OA=OB=1,則點(diǎn)A、B分別與點(diǎn)M、N重合,此時(shí)四邊形OAPB是正方形,故②正確.

∵△MPA≌△NPB,

∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.

∵OA+OB=2,PA=PB,且PA和PB的長度會(huì)不斷的變化,故周長不是定值,故③錯(cuò)誤.

,∵∠AOB+∠APB=180°,

∴點(diǎn)A、O、B、P共圓,且AB為直徑,所以

AB≥OP,故④錯(cuò)誤.

故答案為:①②.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON16、1.【解析】

根據(jù)一副直角三角板的各個(gè)角的度數(shù),結(jié)合三角形內(nèi)角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點(diǎn)睛】本題主要考查三角形的內(nèi)角和定理以及對頂角的性質(zhì),掌握三角形的內(nèi)角和等于180°,是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)直線解析式為y1=2x﹣2,雙曲線的表達(dá)式為y2=(x>0);(2)0<x<2;(3)【解析】

(1)將點(diǎn)B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點(diǎn)坐標(biāo)為(1,0),又因?yàn)镺A=AD,則D點(diǎn)坐標(biāo)為(2,0),把x=2代入直線解析式,可得y=2,從而得到點(diǎn)C的坐標(biāo)為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達(dá)式為y2=(x>0).(2)由x的取值范圍,結(jié)合圖像可求得答案.(3)把x=3代入y2函數(shù),可得y=;把x=3代入y1函數(shù),可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【詳解】解:(1)將點(diǎn)B的坐標(biāo)(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點(diǎn)C的坐標(biāo)為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達(dá)式為y2=(x>0);(2)當(dāng)x>0時(shí),不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面積為.【點(diǎn)睛】本題考察了一次函數(shù)和雙曲線例函數(shù)的綜合;熟練掌握由點(diǎn)求解析式是解題的關(guān)鍵;能夠結(jié)合圖形及三角形面積公式是解題的關(guān)鍵.18、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】

(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;

②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;

(2)先確定出B(1,),D(1,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時(shí),,,當(dāng)時(shí),,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點(diǎn)是線段的中點(diǎn),,當(dāng)時(shí),由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,,當(dāng)時(shí),,,,,,,,,,.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.19、(1)AB的解析式是y=-x+1.點(diǎn)B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過點(diǎn)A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點(diǎn)求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時(shí),0=-x+1,解得x=3,∴點(diǎn)B(3,0).(2)過點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,∵x=1時(shí),y=-x+1=,P在點(diǎn)D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,∴點(diǎn)P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點(diǎn)C作CN⊥直線x=1于點(diǎn)N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點(diǎn)C作CF⊥x軸于點(diǎn)F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).考點(diǎn):一次函數(shù)綜合題.20、(1)見解析;(2)成立;(3)【解析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點(diǎn),∵O為KN的中點(diǎn),∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【點(diǎn)睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度偏大.21、2【解析】

直接利用零指數(shù)冪的性質(zhì)以及負(fù)指數(shù)冪的性質(zhì)、絕對值的性質(zhì)、二次根式以及立方根的運(yùn)算法則分別化簡得出答案.【詳解】解:原式=4﹣3+1+2﹣2=2.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算,難點(diǎn)也在于對原式中零指數(shù)冪、負(fù)指數(shù)冪、絕對值、二次根式以及立方根的運(yùn)算化簡,關(guān)鍵要掌握這些知識(shí)點(diǎn).22、(1)作圖見解析;(2)如圖所示,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)C的坐標(biāo)為(-3,1);(3)如圖所示,點(diǎn)B2的坐標(biāo)為(3,-5),點(diǎn)C2的坐標(biāo)為(3,-1).【解析】

(1)分別作出點(diǎn)B個(gè)點(diǎn)C旋轉(zhuǎn)后的點(diǎn),然后順次連接可以得到;(2)根據(jù)點(diǎn)B的坐標(biāo)畫出平面直角坐標(biāo)系;(3)分別作出點(diǎn)A、點(diǎn)B、點(diǎn)C關(guān)于原點(diǎn)對稱的點(diǎn),然后順次連接可以得到.【詳解】(1)△A如圖所示;(2)如圖所示,A(0,1),C(﹣3,1);(3)△如圖所示,(3,﹣5),(3,﹣1).23、(1)2400個(gè),10天;(2)1人.【解析】

(1)設(shè)原計(jì)劃每天生產(chǎn)零件x個(gè),根據(jù)相等關(guān)系“原計(jì)劃生產(chǎn)24000個(gè)零件所用時(shí)間=實(shí)際生產(chǎn)(24000+300)個(gè)零件所用的時(shí)間”可列方程,解出x即為原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù),再代入即可求得規(guī)定天數(shù);(2)設(shè)原計(jì)劃安排的工人人數(shù)為y人,根據(jù)“(5組機(jī)器人生產(chǎn)流水線每天生產(chǎn)的零件個(gè)數(shù)+原計(jì)劃每天生產(chǎn)的零件個(gè)數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個(gè)”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計(jì)劃安排的工人人數(shù).【詳解】解:(1)解:設(shè)原計(jì)劃每天生產(chǎn)零件x個(gè),由題意得,,解得x=2400,經(jīng)檢驗(yàn),x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論