版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.2.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.33.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.4.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.5.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知雙曲線的左,右焦點分別為,O為坐標(biāo)原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.7.已知,則下列不等式正確的是()A. B.C. D.8.函數(shù)的定義域為()A.或 B.或C. D.9.設(shè)分別為的三邊的中點,則()A. B. C. D.10.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.11.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.12.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.設(shè)為數(shù)列的前項和,若,則____16.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.18.(12分)在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點的極坐標(biāo)為,,求的值.19.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得到曲線,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點,將射線繞極點逆時針方向旋轉(zhuǎn)交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.22.(10分)已知數(shù)列的前項和為,且點在函數(shù)的圖像上;(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.2.C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當(dāng)時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學(xué)生的計算能力,是一道基礎(chǔ)題.3.D【解析】
先由是偶函數(shù),得到關(guān)于直線對稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時,由得,所以,解得;當(dāng)即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.4.D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.5.D【解析】
根據(jù)復(fù)數(shù)的運算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運算,可得,所對應(yīng)的點為位于第四象限.故選D.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運算法則,準(zhǔn)確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.7.D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當(dāng)時,令,,則,,排除B、C選項;(2)當(dāng)時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.8.A【解析】
根據(jù)偶次根式被開方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【點睛】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎(chǔ)題.9.B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎(chǔ)題.10.D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.11.D【解析】
根據(jù)為等腰三角形,可求出點P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.12.C【解析】試題分析:集合考點:集合間的關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
化簡得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時等號成立,故.故答案為:.【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計算能力.14.1【解析】
按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當(dāng)9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.15.【解析】
當(dāng)時,由,解得,當(dāng)時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當(dāng)時,,即,當(dāng)時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.16.【解析】
由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點在橢圓上,所以將點的坐標(biāo)代入橢圓方程中化簡可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強(qiáng),屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2),或,.【解析】
(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.18.(1)曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由,得,所以曲線的直角坐標(biāo)方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡、整理,得.因為直線與曲線交于,兩點.所以,解得.由根與系數(shù)的關(guān)系,得,.因為點的直角坐標(biāo)為,在直線上.所以,解得,此時滿足.且,故..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問題.19.(1)(2)【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結(jié)合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數(shù)最值問題,考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.20.(1).(2)答案見解析【解析】
(1)利用絕對值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.21.(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點的極坐標(biāo)為,點的極坐標(biāo)為,將這兩點的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點的極坐標(biāo)為,點的極坐標(biāo)為,將這兩點的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時,的面積取到最大值.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標(biāo)方程求解三角形面積的最值問題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.22.(1)(2)當(dāng)n為偶數(shù)時,;當(dāng)n為奇數(shù)時,.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學(xué)歸納法,先猜想出通項公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時,,當(dāng)時,也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時,,①當(dāng)時,,所以,②當(dāng)時,,③當(dāng)時,,所以,④……當(dāng)時,n為偶數(shù)當(dāng)時,n為偶數(shù)所以以上個式子相加,得.又,所以當(dāng)n為偶數(shù)時,.同理,當(dāng)n為奇數(shù)時,,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分紅店長合同模板
- 大型公共物業(yè)合同范例
- 個人出售拖車合同范例
- 手機(jī)寄存合同范例
- 光纜遷改合同范例
- 承接套間裝修合同范例
- 2024年婁底客運從業(yè)資格證仿真考試題庫
- 2024年張家界客運從業(yè)資格證考試模擬試題
- 2024年云南c1客運從業(yè)資格證怎么考
- 2024年德州客運從業(yè)資格證考試模擬試題
- 2022年烏魯木齊市法院書記員招聘考試題庫及答案解析
- 應(yīng)急預(yù)案救援物資檢查表
- 安全隱患排查記錄表
- 浙美版美術(shù)四上第5課《美術(shù)檔案袋》課件1
- 初中 初一 心理健康 我有我氣質(zhì) 課件
- 華中科技大學(xué)文科類與管理學(xué)類期刊分類辦法AD類
- DB12T 907-2019 牛糞制備臥床墊料技術(shù)規(guī)程
- 五年級數(shù)學(xué)下冊課件 - 6 圓的認(rèn)識練習(xí) - 蘇教版(共25張PPT)
- 小學(xué)勞動技術(shù) 滬科教版 四年級上冊 4車輛模型 課件
- 小學(xué)信息技術(shù) 遼寧師大版 五年級上冊 第4課 漂亮的藝術(shù)字《漂亮的藝術(shù)字》課件 課件
- 宮外孕手術(shù)配合
評論
0/150
提交評論