版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.2.已知復數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.3.閱讀下側程序框圖,為使輸出的數(shù)據(jù)為31,則①處應填的數(shù)字為A.4 B.5 C.6 D.74.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.5.中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B. C. D.6.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.7.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得8.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.9.拋擲一枚質地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.10.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.411.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.12.若函數(shù)在時取得最小值,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)則______.14.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當?shù)卣顿Y開發(fā)區(qū)域發(fā)展經濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數(shù)解析式;(2)當為何值時,面積為最小,政府投資最低?15.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.16.曲線在處的切線方程是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.18.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.19.(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.20.(12分)己知,,.(1)求證:;(2)若,求證:.21.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.22.(10分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先判斷命題的真假,進而根據(jù)復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.2.C【解析】
把代入,利用復數(shù)代數(shù)形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點睛】本題考查復數(shù)代數(shù)形式的除法運算,考查復數(shù)的基本概念,是基礎題.3.B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.4.D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結果。【詳解】根據(jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D?!军c睛】本題考查了圓錐曲線的相關性質,主要考察了圓與雙曲線的相關性質,考查了圓與雙曲線的綜合應用,考查了數(shù)形結合思想,體現(xiàn)了綜合性,提高了學生的邏輯思維能力,是難題。5.A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。6.C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,
又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.7.A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.8.D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數(shù)的解析式,結合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.9.A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎題10.C【解析】
由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.11.B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.12.D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點睛】本題考查對數(shù)、指數(shù)的運算性質,分段函數(shù)求值關鍵是“對號入座”,屬于容易題.14.(1);(2).【解析】
(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構建新的函數(shù),由二次函數(shù)性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應用,應優(yōu)先結合實際建立合適的數(shù)學模型,再按模型求最值,屬于難題.15.【解析】
利用等差數(shù)列的通項公式以及等比中項的性質,化簡求出公差與的關系,然后轉化求解的值.【詳解】設等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎題.16.【解析】
利用導數(shù)的運算法則求出導函數(shù),再利用導數(shù)的幾何意義即可求解.【詳解】求導得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數(shù)的導數(shù)、導數(shù)的運算法則以及導數(shù)的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)或(2)證明見解析【解析】
(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當時,恒成立,解得;當時,由,解得;當時,由解得所以的解集為或(2)由(1)可求得最小值為,即因為均為正實數(shù),且(當且僅當時,取“”)所以,即.【點睛】本小題主要考查絕對值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.18.(1);(2).【解析】
(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標運算,是一道容易題.19.(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設,得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關鍵是處理好與角的關系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當時,取到最大值,最大值為.當時,取到最小值,最小值為.【考點定位】1、橢圓和直線的參數(shù)方程;2、點到直線的距離公式;3、解直角三角形.20.(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉化思想,屬于中檔題..21.(1)7(2)14【解析】
(1)在中,,可得,結合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點睛】本題主要考查了正弦定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 克羅恩病的護理診斷
- 試驗室安全教育培訓
- 寒號鳥課件2教學課件
- 3-2-2 物質的量在化學方程式計算中的應用 課件 高一上學期化學人教版(2019)必修第一冊
- 腦轉移瘤目前治療策略
- 糖尿病前期指導
- 年終合同管理總結
- 保護我的耳朵教案及反思小班
- 荷花淀說課稿
- 漢教學說課稿
- 《金融科技概論(第二版)》高職全套教學課件
- 風力發(fā)電項目施工方案
- (2024年)傳染病培訓課件
- 沙盤游戲大綱
- 物理化學實驗B智慧樹知到課后章節(jié)答案2023年下北京科技大學
- 實驗室安全準入教育(通識A課程)學習通超星課后章節(jié)答案期末考試題庫2023年
- 無機及分析化學考試題(附答案)
- 勞動合同廈門市人力資源和社會保障局制
- 【教案】《認識計算機硬件設備及作用》教學設計
- 個人房屋租賃合同和押金房租收據(jù)(最新整理)
- 臥式車床電氣控制電路設計畢業(yè)設計
評論
0/150
提交評論