下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)業(yè)分層測評(十五)(建議用時:45分鐘)[學(xué)業(yè)達標]一、選擇題1.在平行四邊形ABCD中,eq\o(AB,\s\up13(→))=a,eq\o(AD,\s\up13(→))=b,則eq\o(BD,\s\up13(→))的相反向量是()-b -a+b D.-a-b【解析】∵eq\o(BD,\s\up13(→))=eq\o(AD,\s\up13(→))-eq\o(AB,\s\up13(→))=b-a,∴eq\o(BD,\s\up13(→))的相反向量為-(b-a)=a-b.【答案】A2.已知平面內(nèi)M,N,P三點滿足eq\o(MN,\s\up13(→))-eq\o(PN,\s\up13(→))+eq\o(PM,\s\up13(→))=0,則下列說法正確的是(),N,P是一個三角形的三個頂點,N,P是一條直線上的三個點,N,P是平面內(nèi)的任意三個點D.以上都不對【解析】因為eq\o(MN,\s\up13(→))-eq\o(PN,\s\up13(→))+eq\o(PM,\s\up13(→))=eq\o(MN,\s\up13(→))+eq\o(NP,\s\up13(→))+eq\o(PM,\s\up13(→))=eq\o(MP,\s\up13(→))+eq\o(PM,\s\up13(→))=0,eq\o(MN,\s\up13(→))+eq\o(NP,\s\up13(→))+eq\o(PM,\s\up13(→))=0對任意情況是恒成立的.故M,N,P是平面內(nèi)的任意三個點.故選C.【答案】C3.(2023·天津和平區(qū)期末)在四邊形ABCD中,給出下列四個結(jié)論,其中一定正確的是()\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(CA,\s\up13(→)) \o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→))\o(AB,\s\up13(→))+eq\o(AD,\s\up13(→))=eq\o(AC,\s\up13(→)) \o(AB,\s\up13(→))-eq\o(AD,\s\up13(→))=eq\o(BD,\s\up13(→))【解析】由向量加減法法則知eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)),eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→)),C項只有四邊形ABCD是平行四邊形時才成立,eq\o(AB,\s\up13(→))-eq\o(AD,\s\up13(→))=eq\o(DB,\s\up13(→)).故選B.【答案】B4.給出下列各式:①eq\o(AB,\s\up13(→))+eq\o(CA,\s\up13(→))+eq\o(BC,\s\up13(→));②eq\o(AB,\s\up13(→))-eq\o(CD,\s\up13(→))+eq\o(BD,\s\up13(→))-eq\o(AC,\s\up13(→));③eq\o(AD,\s\up13(→))-eq\o(OD,\s\up13(→))+eq\o(OA,\s\up13(→));④eq\o(NQ,\s\up13(→))-eq\o(MP,\s\up13(→))+eq\o(QP,\s\up13(→))+eq\o(MN,\s\up13(→)).對這些式子進行化簡,則其化簡結(jié)果為0的式子的個數(shù)是() 【解析】①eq\o(AB,\s\up13(→))+eq\o(CA,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→))+eq\o(CA,\s\up13(→))=0;②eq\o(AB,\s\up13(→))-eq\o(CD,\s\up13(→))+eq\o(BD,\s\up13(→))-eq\o(AC,\s\up13(→))=eq\o(AB,\s\up13(→))+eq\o(BD,\s\up13(→))-(eq\o(AC,\s\up13(→))+eq\o(CD,\s\up13(→)))=eq\o(AD,\s\up13(→))-eq\o(AD,\s\up13(→))=0;③eq\o(AD,\s\up13(→))-eq\o(OD,\s\up13(→))+eq\o(OA,\s\up13(→))=eq\o(AD,\s\up13(→))+eq\o(DO,\s\up13(→))+eq\o(OA,\s\up13(→))=eq\o(AO,\s\up13(→))+eq\o(OA,\s\up13(→))=0;④eq\o(NQ,\s\up13(→))-eq\o(MP,\s\up13(→))+eq\o(QP,\s\up13(→))+eq\o(MN,\s\up13(→))=eq\o(NQ,\s\up13(→))+eq\o(QP,\s\up13(→))+eq\o(MN,\s\up13(→))-eq\o(MP,\s\up13(→))=eq\o(NP,\s\up13(→))+eq\o(PN,\s\up13(→))=0.【答案】A5.已知D,E,F(xiàn)分別是△ABC的邊AB,BC,CA的中點,則()【導(dǎo)學(xué)號:72023047】圖2-1-23\o(AD,\s\up13(→))+eq\o(BE,\s\up13(→))+eq\o(CF,\s\up13(→))=0 \o(BD,\s\up13(→))-eq\o(CF,\s\up13(→))+eq\o(DF,\s\up13(→))=0\o(AD,\s\up13(→))+eq\o(CE,\s\up13(→))-eq\o(CF,\s\up13(→))=0 \o(BD,\s\up13(→))-eq\o(BE,\s\up13(→))-eq\o(FC,\s\up13(→))=0【解析】因為D,E,F(xiàn)分別是△ABC的邊AB,BC,CA的中點,所以eq\o(AD,\s\up13(→))=eq\o(DB,\s\up13(→)),eq\o(CF,\s\up13(→))=eq\o(ED,\s\up13(→)),eq\o(FC,\s\up13(→))=eq\o(DE,\s\up13(→)),eq\o(FE,\s\up13(→))=eq\o(DB,\s\up13(→)),所以eq\o(AD,\s\up13(→))+eq\o(BE,\s\up13(→))+eq\o(CF,\s\up13(→))=eq\o(DB,\s\up13(→))+eq\o(BE,\s\up13(→))+eq\o(ED,\s\up13(→))=0,故A成立.eq\o(BD,\s\up13(→))-eq\o(CF,\s\up13(→))+eq\o(DF,\s\up13(→))=eq\o(BD,\s\up13(→))+eq\o(DF,\s\up13(→))-eq\o(CF,\s\up13(→))=eq\o(BF,\s\up13(→))+eq\o(FC,\s\up13(→))=eq\o(BC,\s\up13(→))≠0,故B不成立.eq\o(AD,\s\up13(→))+eq\o(CE,\s\up13(→))-eq\o(CF,\s\up13(→))=eq\o(AD,\s\up13(→))+eq\o(FE,\s\up13(→))=eq\o(AD,\s\up13(→))+eq\o(DB,\s\up13(→))=eq\o(AB,\s\up13(→))≠0,故C不成立.eq\o(BD,\s\up13(→))-eq\o(BE,\s\up13(→))-eq\o(FC,\s\up13(→))=eq\o(ED,\s\up13(→))-eq\o(DE,\s\up13(→))=eq\o(ED,\s\up13(→))+eq\o(ED,\s\up13(→))≠0,故D不成立.【答案】A二、填空題6.如圖2-1-24所示,已知O為平行四邊形ABCD內(nèi)一點,eq\o(OA,\s\up13(→))=a,eq\o(OB,\s\up13(→))=b,eq\o(OC,\s\up13(→))=c,則eq\o(OD,\s\up13(→))=________.(用a,b,c表示)圖2-1-24【解析】由題意,在平行四邊形ABCD中,因為eq\o(OA,\s\up13(→))=a,eq\o(OB,\s\up13(→))=b,所以eq\o(BA,\s\up13(→))=eq\o(OA,\s\up13(→))-eq\o(OB,\s\up13(→))=a-b,所以eq\o(CD,\s\up13(→))=eq\o(BA,\s\up13(→))=a-b,所以eq\o(OD,\s\up13(→))=eq\o(OC,\s\up13(→))+eq\o(CD,\s\up13(→))=a-b+c.【答案】a-b+c7.在平行四邊形ABCD中,若eq\o(AB,\s\up13(→))=a,eq\o(AD,\s\up13(→))=b,且|a+b|=|a-b|,則四邊形ABCD的形狀是________.【解析】由平行四邊形法則知,|a+b|,|a-b|分別表示對角線AC,BD的長,當|eq\o(AC,\s\up13(→))|=|eq\o(BD,\s\up13(→))|時,平行四邊形ABCD為矩形.【答案】矩形三、解答題8.圖2-1-25如圖2-1-25,解答下列各題:(1)用a,d,e表示eq\o(DB,\s\up13(→)).(2)用b,c表示eq\o(DB,\s\up13(→)).(3)用a,b,e表示eq\o(EC,\s\up13(→)).(4)用d,c表示eq\o(EC,\s\up13(→)).【解】因為eq\o(AB,\s\up13(→))=a,eq\o(BC,\s\up13(→))=b,eq\o(CD,\s\up13(→))=c,eq\o(DE,\s\up13(→))=d,eq\o(EA,\s\up13(→))=e,所以(1)eq\o(DB,\s\up13(→))=eq\o(DE,\s\up13(→))+eq\o(EA,\s\up13(→))+eq\o(AB,\s\up13(→))=d+e+a;(2)eq\o(DB,\s\up13(→))=eq\o(CB,\s\up13(→))-eq\o(CD,\s\up13(→))=-eq\o(BC,\s\up13(→))-eq\o(CD,\s\up13(→))=-b-c;(3)eq\o(EC,\s\up13(→))=eq\o(EA,\s\up13(→))+eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=a+b+e;(4)eq\o(EC,\s\up13(→))=-eq\o(CE,\s\up13(→))=-(eq\o(CD,\s\up13(→))+eq\o(DE,\s\up13(→)))=-c-d.9.(2023·泰安高一檢測)已知△ABC是等腰直角三角形,∠ACB=90°,M是斜邊AB的中點,eq\o(CM,\s\up13(→))=a,eq\o(CA,\s\up13(→))=b,求證:(1)|a-b|=|a|;(2)|a+(a-b)|=|b|.【證明】如圖,在等腰Rt△ABC中,由M是斜邊AB的中點,得|eq\o(CM,\s\up13(→))|=|eq\o(AM,\s\up13(→))|,|eq\o(CA,\s\up13(→))|=|eq\o(CB,\s\up13(→))|.(1)在△ACM中,eq\o(AM,\s\up13(→))=eq\o(CM,\s\up13(→))-eq\o(CA,\s\up13(→))=a-b.于是由|eq\o(AM,\s\up13(→))|=|eq\o(CM,\s\up13(→))|,得|a-b|=|a|.(2)在△MCB中,eq\o(MB,\s\up13(→))=eq\o(AM,\s\up13(→))=a-b,所以eq\o(CB,\s\up13(→))=eq\o(MB,\s\up13(→))-eq\o(MC,\s\up13(→))=a-b+a=a+(a-b).從而由|eq\o(CB,\s\up13(→))|=|eq\o(CA,\s\up13(→))|,得|a+(a-b)|=|b|.[能力提升]1.平面內(nèi)有三點A,B,C,設(shè)m=eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→)),n=eq\o(AB,\s\up13(→))-eq\o(BC,\s\up13(→)),若|m|=|n|,則有(),B,C三點必在同一直線上B.△ABC必為等腰三角形且∠ABC為頂角C.△ABC必為直角三角形且∠ABC=90°D.△ABC必為等腰直角三角形【解析】如圖,作eq\o(AD,\s\up13(→))=eq\o(BC,\s\up13(→)),則ABCD為平行四邊形,從而m=eq\o(AB,\s\up13(→))+eq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【大學(xué)課件】GIS技術(shù)的發(fā)展現(xiàn)狀和趨勢
- 餐館食材供應(yīng)合同三篇
- 系統(tǒng)工程課件層次分析法案例
- 《數(shù)字證書CA培》課件
- 醫(yī)院人事管理課件
- 類風(fēng)濕性關(guān)節(jié)炎護理查房
- 《數(shù)據(jù)化管理應(yīng)用》課件
- 《保額分紅優(yōu)勢》課件
- 《信息系統(tǒng)工程》課件
- 浙江省人教版歷史與社會八年級下冊6.2《沖破思想的牢籠》教學(xué)實錄2
- C#筆試題及答案
- python程序編寫入門教案-完整版
- 供應(yīng)鏈數(shù)字化轉(zhuǎn)型
- 小學(xué)英語-What's he like Story time教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 第5章 自動駕駛技術(shù)
- 國開經(jīng)濟法律基礎(chǔ)形考任務(wù)國開電大《經(jīng)濟法律基礎(chǔ)》形考任務(wù)3答案
- 水質(zhì)監(jiān)測運維方案樣本
- 生命教育三年級下冊
- 高壓旋噴樁檢測方案
- Unit1 My classroom Part A Lets spell(說課稿)-2022-2023學(xué)年英語四年級上冊
- 【要點解讀】《實踐是檢驗真理的唯一標準》論證邏輯圖
評論
0/150
提交評論