版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線:的一條漸近線方程為,則()A. B. C. D.2.函數(shù)f(x)=2x-3A.[32C.[323.已知為正項(xiàng)等比數(shù)列,是它的前項(xiàng)和,若,且與的等差中項(xiàng)為,則的值是()A.29 B.30 C.31 D.324.設(shè),則(
)A.10 B.11 C.12 D.135.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.546.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.7.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.8.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.9.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}10.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.11.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.14.已知,記,則的展開式中各項(xiàng)系數(shù)和為__________.15.函數(shù)的定義域?yàn)開_________.16.已知非零向量,滿足,且,則與的夾角為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.18.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.19.(12分)設(shè)都是正數(shù),且,.求證:.20.(12分)直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時(shí),求直線的方程.21.(12分)已知是拋物線的焦點(diǎn),點(diǎn)在軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.22.(10分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過濾器采用并聯(lián)安裝,再與一級(jí)過濾器串聯(lián)安裝.其中每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購買濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級(jí)濾芯更換頻數(shù)分布表一級(jí)濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級(jí)濾芯更換頻數(shù)條形圖以100個(gè)一級(jí)過濾器更換濾芯的頻率代替1個(gè)一級(jí)過濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過濾器更換濾芯的頻率代替1個(gè)二級(jí)過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.2、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點(diǎn)睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對(duì)實(shí)際問題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx3、B【解析】
設(shè)正項(xiàng)等比數(shù)列的公比為q,運(yùn)用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計(jì)算即可得到所求.【詳解】設(shè)正項(xiàng)等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項(xiàng)為,即有a4+a7=,即16q3+16q6,=,解得q=(負(fù)值舍去),則有S5===1.故選C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時(shí)考查等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于中檔題.4、B【解析】
根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.5、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.6、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.8、B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.9、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.10、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)椋?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.11、B【解析】
由,可得,解出即可判斷出結(jié)論.【詳解】解:因?yàn)?,且.,解得.是的必要不充分條件.故選:.【點(diǎn)睛】本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,畫出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫妫矫嫫矫?,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.14、【解析】
根據(jù)定積分的計(jì)算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計(jì)算,可得,令,則,即的展開式中各項(xiàng)系數(shù)和為.【點(diǎn)睛】本題主要考查了定積分的應(yīng)用,以及二項(xiàng)式定理的應(yīng)用,其中解答中根據(jù)定積分的計(jì)算和二項(xiàng)式定理求得的表示是解答本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域?yàn)?.故答案為:【點(diǎn)睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.16、(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點(diǎn)睛】本題主要考查向量的數(shù)量積運(yùn)算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點(diǎn)分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對(duì)值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,,或,或,或所以不等式的解集為;(Ⅱ)因?yàn)?,又(?dāng)時(shí)等號(hào)成立),依題意,,,有,則,解之得,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查由存在性問題求參數(shù)的范圍、零點(diǎn)分段討論法解絕對(duì)值不等式、利用絕對(duì)值三角不等式和均值不等式求最值;考查運(yùn)算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.18、(1),(2)【解析】
(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯(cuò)位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及錯(cuò)位相減求和等.屬于中檔題.19、證明見解析【解析】
利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。20、(1);(2)【解析】
(1)設(shè)出兩點(diǎn)的坐標(biāo),由距離之積為16,可得.利用向量的數(shù)量積坐標(biāo)運(yùn)算,將轉(zhuǎn)化為.再利用兩點(diǎn)均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設(shè)出直線l的方程,代入拋物線方程,由韋達(dá)定理發(fā)現(xiàn)直線l恒過定點(diǎn),將面積用參數(shù)t表示,求出其最值,并得出此時(shí)的直線方程.【詳解】解:(1)由題設(shè),因?yàn)?,到軸的距離的積為,所以,又因?yàn)椋?,,所以拋物線的方程為.(2)因?yàn)橹本€與拋物線兩個(gè)公共點(diǎn),所以的斜率不為,所以設(shè)聯(lián)立,得,即,,即直線恒過定點(diǎn),所以,當(dāng)時(shí),面積取得最小值,此時(shí).【點(diǎn)睛】本題考查了拋物線的標(biāo)準(zhǔn)方程的求法,直線與拋物線相交的問題,其中垂直條件的轉(zhuǎn)化,直線過定點(diǎn)均為該題的關(guān)鍵,屬于綜合性較強(qiáng)的題.21、(1);(2).【解析】
(1)求得點(diǎn)的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實(shí)數(shù)的值,進(jìn)而可得出拋物線的方程;(2)設(shè)點(diǎn),,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合求得的值,可得出直線所過定點(diǎn)的坐標(biāo),由此可得出點(diǎn)到直線的最大距離.【詳解】(1)易知點(diǎn),又,所以點(diǎn),則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設(shè)的方程為,聯(lián)立有,設(shè)點(diǎn),,則,所以.所以,解得.所以直線的方程為,恒過點(diǎn).又點(diǎn),故當(dāng)直線與軸垂直時(shí),點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查拋物線方程的求解,同時(shí)也考查了拋物線中最值問題的求解,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.22、(1)0.024;(2)分布列見解析,;(3)【解析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代遠(yuǎn)程教育課程設(shè)計(jì)
- 指紋識(shí)別課程設(shè)計(jì)
- 系統(tǒng)開發(fā)與實(shí)戰(zhàn)課程設(shè)計(jì)
- 2025湖北省安全員考試題庫及答案
- 紅酒培訓(xùn)課程設(shè)計(jì)語
- 心理課程設(shè)計(jì)要點(diǎn)
- 機(jī)床課程設(shè)計(jì)3d
- 電梯plc課程設(shè)計(jì)
- 斯維爾課課程設(shè)計(jì)
- 比較簡單的思維課程設(shè)計(jì)
- 病例報(bào)告表(CRF)模板
- 2022年江蘇省普通高中學(xué)業(yè)水平測試生物試卷
- 湖南省長沙市2022-2023學(xué)年二年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 齊魯針灸智慧樹知到期末考試答案2024年
- 公共體育(三)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 學(xué)校學(xué)生評(píng)教表
- 驗(yàn)收合格證明(共9頁)
- 蘇強(qiáng)格命名規(guī)則
- 濟(jì)寧學(xué)院鏈板式輸送機(jī)傳動(dòng)裝置(錐齒輪單級(jí)減速器的設(shè)計(jì)說明書
- 容器支腿計(jì)算公式(支腿計(jì)算主要用于立式容器的支腿受力及地腳螺栓計(jì)算)
- 閭山秘籍(精編版)
評(píng)論
0/150
提交評(píng)論