醫(yī)學影像分析與實作_第1頁
醫(yī)學影像分析與實作_第2頁
醫(yī)學影像分析與實作_第3頁
醫(yī)學影像分析與實作_第4頁
醫(yī)學影像分析與實作_第5頁
已閱讀5頁,還剩62頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

醫(yī)學影像分析與實作

2020/12/191OUTLINEImageacquisitionmethodImageenhancementMethodsofQualitativeImageAnalysisExampleforclinicalmedicalimageanalysis2020/12/192Mostnuclearmedicineimagingsystemspresenttheirinformationasdigitalimages.Adigitalimageisstoredinthecomputerasanarrayormatrixofcountvaluesandisdisplayedbyassigningagrayorcolorscalethatdependsonthenumberofcountsineachelement.

2020/12/193DigitalImageTheImagearraysaresquarematricesthathavedimensionsrangefrom32*32upto1024*1024Innuclearmedicine:32*32,64*64,128*128,256*256,512*512,1024*1024Bytemode&wordmode

2020/12/194ImageformationFrameModeListModeDualIsotopeImaging2020/12/195Framemode X-YcoordinateBytemode:256grayscale1byte=8bitsWordmode:65535grayscale2byte=1word2020/12/196Listmode2bytedataseriesEventaddressesTimeflagListmodecanbeformattedanyframesizeListmodeneedmorememory2020/12/197SamplingSamplingsize:pixelsize(mm)=fieldofview(mm)/#ofpixelsWhatshouldthepixelsizebe?1.Thespatialresolutionofimagingsystem2.Thesmallestobjectofinterestintheimage3.Thetimeittakestoperformanyprocessingsteps.4.Theamountofstorageandarchivalspaceavailable.2020/12/198InformationDensityWhatinformationcanweexpecttoperceiveatagivencountdensity?☆thisdependsonthesizeofthesmallestregionintheimageyouaretryingtoperceiveanditsapparentcontrasttothesurroundingbackground.※Howtodefinetheimageinformationdensity?n>k2/C2d2

n:estimatethecountdensityk:thesignal–to–noiseratio(3~5)C:imageconstrastd:imagediameter◎Imageconstrast=(objectcountdensity-backgroundcountdensity)/backgroundcountdensity2020/12/199ImageAcquisitionStaticstudiesWhole-BodyImagingDynamicstudiesGatedAcquisitionSPECTAcquisition2020/12/1910DataAcquisitionMethodFrameModeListMode2020/12/1911FramemodeAcquisitionPictureelements64*64128*128256*256Pixel:PictureelementSquaremosaic:Imagematrix,Imagearraypixelarray2020/12/1912ResolutionSpatialResolutionTemporalResolutionEnergyResolution2020/12/1913SpatialResolution Eachpixelintheimagematrixhasone-to-onecorrespondencewithagivenlocationintheplaneofNaIcrystalEx:GammacameraFOV=40cmdiameterFor64*64S.R=400/64=6.25mm/pixelFor128*128S.R=400/128=3.13mm/pixel2020/12/1914StatisticalNoise2020/12/1915IncreaseSpatialresolutionZoomingHardwareSoftwareZoomcan(1)decreaseBackgroundcount(2)increaseresolutionThespatialresolutionofcomputerimageisultimatelylimitbyresolutionofgammacamera2020/12/1916BytemodeV.S.Wordmode1Byte=28bits=256(0-255)1Word=216bits=65536(0-65535)1Word=2Bytes2020/12/1917BytemodeV.S.WordmodeBytemodeAcquisition:apixeldeepis1byteWordmodeAcquisition:apixeldeepis2byteWhatKindoftheacquisitionmodeweshouldused?Inlowcountstudies=>BytemodeInHighcountstudies=>Wordmode2020/12/1918BytemodeV.S.WordmodeBytemode優(yōu)點:lessmemory缺點:1.deadtime2.truncationerrorWordmode優(yōu)點:1.Nodeadtime2.Notruncation缺點:morememory

Overflow:Deadtime:Truncation:2020/12/1919臨床診斷上使用的應用軟體影像增強(Imageenhancement)量化分析(QualitativeImageanalysisECT影像重建(ECTimagereconstruction)2020/12/1920ImageEnhancementImagesmoothingfiltersP72020/12/1921ImageEnhancementNine-pointsmooth(mask)w1 w2 w3w4 w5 w6w7 w8 w91111111112020/12/1922ImageEnhancement2020/12/1923ImageEnhancement2020/12/1924ImageEnhancementMediumsmoothHalfwaymask=>replaceaverage(weight)>50%countvalue(mask)<50%countvalue(Keep)2020/12/19252020/12/19262020/12/1927ImageEnhancementEdge-enhancementfilter(sharpenmask)Mask:(2N+1)*(2N+1)2020/12/19282020/12/1929ImageEnhancementPointprocessingoperationsBackgroundsubtractionGrayscalesColortranslationtableFrameprocessingoperationex:Parathyroidscanstudy2020/12/1930Parathyroidsubtractuin2020/12/1931ImageEnhancement-1-1-1-18-1-1-1-12020/12/1932影像量化分析ROI(regionofinteresting)createHistogramcreateAnalysisROIandHistogramClinicalmathematic2020/12/1933PointprocessingoperationBackgroundsubtraction(pixel-by-pixel)2020/12/1934PointprocessingoperationInterpolatedbackgroundsubtraction(weight)Wa=Xb/XaWb=Xa/XbWc=Yd/YcWd=Yc/YdXa:Q距A點距離Xb:Q距B點距離Yc:Q距C點距離Yd:Q距D點距離2020/12/1935GrayscalesandcolortableGrayscale(dynamicrange)thenumberofshadesofgraybetweenthesetwoextremesType:Linearexponentiallogarithmic2020/12/1936Grayandcolortable2020/12/1937Grayscalesandcolordisplay2020/12/1938Grayscalesandcolordisplay2020/12/1939Lungperfusion/ventilationratio2020/12/1940Tl201myocardialperfusionstudy2020/12/1941CreatingROIsAutomaticedgedetectionmethods:2020/12/1942CreateROIMethod:CircularROIRectangularROIIrregularROIAutomaticROI2020/12/1943CurveGenerationandAnalysisThestartingpointforanalyzingtheflowpatternquantitativelyistheconstructionofanactivity-versus-timecurve.MethodEye-ballingThemoveaveragemethodTheweightedmoving-averagemethod2020/12/1944TheMovingAveragemethod2020/12/1945TheMovingAveragemethod2020/12/1946DatasmoothingbycurveFitting2020/12/1947ClinicalMathematicinNuclearMedicineNuclearCardiologyMultiple-gateequilibriumFirstpassblood-poolStaticmyocardialperfusionstudyRenalfunctionGFRKidneyradioERPFDiureticrenography(Lasix)CaptoprilrenographyOther2020/12/1948ExampleforVentricularEjectionFraction2020/12/1949Multiplegatemode2020/12/1950EjectionFraction2020/12/1951EjectionFraction2020/12/1952EjectionFraction2020/12/1953EjectionFraction2020/12/1954Ejectionfraction2020/12/1955Gastricemptytimestudy2020/12/1956Exampleforrenalfunction2020/12/1957AnalysistoolsForrenalimageratio:1.Arithmeticmethod2.GeometricmethodForfunctionalimage:1.ROI(regionofinteresting)2.Histogram(Timeactivitycurve,TAC)3.Curvefitting2020/12/1958Arithmeticv.s.GeometricROIinformation(RINFO)Renalimageratio2020/12/1959ImageratioArithmeticmethod:anteriorview:rightkidneycount(Ra)leftkidneycount(La)posteriorview:rightkidneycount(Rp)leftkidneycount(Lp)mean:(Ra+Rp)/2=Rm,(La+Lp)/2=LmRatio:Kr=Rm/(Rm+Lm),Kl=Lm/(Rm+Lm)

2020/12/1960ImageratioGeometricmethod:anteriorview:rightkidneycount(Ra)leftkidneycount(La)posteriorview:rightkidneycount(Rp)leftkidneycount(Lp)mean:Ratio:Kr=Rm/(Rm+Lm),Kl=Lm/(Rm+Lm)2020/12/1961Gate’smethod

2020/12/1962StartCreateROICreateBackgroundROIFramegroupingCreateTAC(timeactivitycurve)ChoiceintegralareaFinalreportEndProcedureFlowChart2020/12/1963GFRrenalfunctionstudy2020/12/1964Conclusion核子醫(yī)學造影檢查造影過程電腦資料分析未來發(fā)展趨勢TraceKineticsmodelMathematicToolsNewProcedureMorepowerfulImageprocesstool2020/12/1965THEEND2020/1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論