廣西壯族自治區(qū)欽州市浦北縣市級名校2023屆中考四模數(shù)學(xué)試題含解析_第1頁
廣西壯族自治區(qū)欽州市浦北縣市級名校2023屆中考四模數(shù)學(xué)試題含解析_第2頁
廣西壯族自治區(qū)欽州市浦北縣市級名校2023屆中考四模數(shù)學(xué)試題含解析_第3頁
廣西壯族自治區(qū)欽州市浦北縣市級名校2023屆中考四模數(shù)學(xué)試題含解析_第4頁
廣西壯族自治區(qū)欽州市浦北縣市級名校2023屆中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進(jìn)行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數(shù)有()A.1個B.2個C.3個D.4個2.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.3.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形4.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°5.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π6.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個7.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x48.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°9.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.10.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)11.化簡的結(jié)果是()A. B. C. D.12.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某廣場要做一個由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個頂點)有n(n>1)盆花,設(shè)這個花壇邊上的花盆的總數(shù)為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.14.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.15.若直角三角形兩邊分別為6和8,則它內(nèi)切圓的半徑為_____.16.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標(biāo)分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當(dāng)點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.17.如圖,在平行四邊形ABCD中,過對角線AC與BD的交點O作AC的垂線交于點E,連接CE,若AB=4,BC=6,則△CDE的周長是______.18.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標(biāo);(2)點M是拋物線上的動點,設(shè)點M的橫坐標(biāo)為m.①當(dāng)∠MBA=∠BDE時,求點M的坐標(biāo);②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.20.(6分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問題發(fā)現(xiàn)①當(dāng)θ=0°時,=;②當(dāng)θ=180°時,=.(2)拓展探究試判斷:當(dāng)0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉(zhuǎn)過程中,BE的最大值為;②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為.21.(6分)已知二次函數(shù)y=a(x+m)2的頂點坐標(biāo)為(﹣1,0),且過點A(﹣2,﹣).(1)求這個二次函數(shù)的解析式;(2)點B(2,﹣2)在這個函數(shù)圖象上嗎?(3)你能通過左,右平移函數(shù)圖象,使它過點B嗎?若能,請寫出平移方案.22.(8分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.23.(8分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).24.(10分)某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項,現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.請結(jié)合以上信息解答下列問題:(1)m=;(2)請補(bǔ)全上面的條形統(tǒng)計圖;(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為;(4)已知該校共有1200名學(xué)生,請你估計該校約有名學(xué)生最喜愛足球活動.25.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.26.(12分)閱讀材料,解答下列問題:神奇的等式當(dāng)a≠b時,一般來說會有a2+b≠a+b2,然而當(dāng)a和b是特殊的分?jǐn)?shù)時,這個等式卻是成立的例如:()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…(1)特例驗證:請再寫出一個具有上述特征的等式:;(2)猜想結(jié)論:用n(n為正整數(shù))表示分?jǐn)?shù)的分母,上述等式可表示為:;(3)證明推廣:①(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;②等式()2+=+()2(m,n為任意實數(shù),且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數(shù));若不成立,說明理由.27.(12分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結(jié)果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)對頂角的定義,平行線的性質(zhì)以及正五邊形的內(nèi)角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關(guān)系的要求,相等的角不一定是對頂角,故為假命題;②只有當(dāng)兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內(nèi)角和為540°,則其內(nèi)角為108°,而360°并不是108°的整數(shù)倍,不能進(jìn)行平面鑲嵌,故為假命題;④在同一平面內(nèi),垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【點睛】本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關(guān)概念.關(guān)鍵是熟悉這些概念,正確判斷.2、A【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;

②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,

概率為.

故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.3、D【解析】

根據(jù)全等三角形的性質(zhì)可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質(zhì),兩三角形全等,其對應(yīng)邊和對應(yīng)角都相等.4、A【解析】

根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進(jìn)而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.5、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小是關(guān)鍵.6、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當(dāng)x=2時,y=4a+2b+c<0,當(dāng)x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.7、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.8、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、B【解析】分析:直接利用軸對稱圖形的性質(zhì)進(jìn)而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點睛:本題主要考查了全等三角形的性質(zhì)和軸對稱圖形,正確把握軸對稱圖形的性質(zhì)是解題的關(guān)鍵.10、D【解析】設(shè)分配x名工人生產(chǎn)螺栓,則(27-x)人生產(chǎn)螺母,根據(jù)一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.11、D【解析】

將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關(guān)鍵.12、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、S=1n-1【解析】觀察可得,n=2時,S=1;

n=3時,S=1+(3-2)×1=12;

n=4時,S=1+(4-2)×1=18;

…;

所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.

故答案為S=1n-1.【點睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.14、3【解析】

連接OA.根據(jù)反比例函數(shù)的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2

①.根據(jù)S△OAC=2,得出-a-b=2

②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識,綜合性較強(qiáng),難度適中.根據(jù)反比例函數(shù)的對稱性得出OB=OC是解題的突破口.15、2或-1【解析】

根據(jù)已知題意,求第三邊的長必須分類討論,即8是斜邊或直角邊的兩種情況,然后利用勾股定理求出另一邊的長,再根據(jù)內(nèi)切圓半徑公式求解即可.【詳解】若8是直角邊,則該三角形的斜邊的長為:,∴內(nèi)切圓的半徑為:;若8是斜邊,則該三角形的另一條直角邊的長為:,∴內(nèi)切圓的半徑為:.故答案為2或-1.【點睛】本題考查了勾股定理,三角形的內(nèi)切圓,以及分類討論的數(shù)學(xué)思想,分類討論是解答本題的關(guān)鍵.16、1【解析】

先根據(jù)勾股定理求得AC的長,從而得到C點坐標(biāo),然后根據(jù)平移的性質(zhì),將C點縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標(biāo)為(﹣1,1).當(dāng)y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點睛】本題主要考查平移的性質(zhì),解此題的關(guān)鍵在于先利用勾股定理求得相關(guān)點的坐標(biāo),然后根據(jù)平移的性質(zhì)將其縱坐標(biāo)代入直線函數(shù)式求解即可.17、1【解析】

由平行四邊形ABCD的對角線相交于點O,OE⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AE=CE,又由平行四邊形ABCD的AB+BC=AD+CD=1,繼而可得結(jié)論.【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周長為:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案為1.【點睛】本題考查了平行四邊形的性質(zhì),線段的垂直平分線的性質(zhì)定理等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.18、1【解析】

主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(1,4)(2)①點M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因為點M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(biāo)(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當(dāng)點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當(dāng)點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜上所述,滿足條件的點M坐標(biāo)(﹣,)或(﹣,﹣);②如圖中,∵M(jìn)N∥x軸,∴點M、N關(guān)于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當(dāng)﹣m2+2m+3=1﹣m時,解得m=,當(dāng)﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.【點睛】本題考查二次函數(shù)綜合題、銳角三角函數(shù)、正方形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.20、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】

(1)①先判斷出DE∥CB,進(jìn)而得出比例式,代值即可得出結(jié)論;②先得出DE∥BC,即可得出,,再用比例的性質(zhì)即可得出結(jié)論;(2)先∠CAD=∠BAE,進(jìn)而判斷出△ADC∽△AEB即可得出結(jié)論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結(jié)論即可得出CD.【詳解】解:(1)①當(dāng)θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當(dāng)θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當(dāng)0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當(dāng)點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當(dāng)點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當(dāng)點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質(zhì)和判定,勾股定理,相似三角形的判定和性質(zhì),比例的基本性質(zhì)及分類討論的數(shù)學(xué)思想,解(1)的關(guān)鍵是得出DE∥BC,解(2)的關(guān)鍵是判斷出△ADC∽△AEB,解(3)關(guān)鍵是作出圖形求出BD,是一道中等難度的題目.21、(1)y=﹣(x+1)1;(1)點B(1,﹣1)不在這個函數(shù)的圖象上;(3)拋物線向左平移1個單位或平移5個單位函數(shù),即可過點B;【解析】

(1)根據(jù)待定系數(shù)法即可得出二次函數(shù)的解析式;(1)代入B(1,-1)即可判斷;(3)根據(jù)題意設(shè)平移后的解析式為y=-(x+1+m)1,代入B的坐標(biāo),求得m的植即可.【詳解】解:(1)∵二次函數(shù)y=a(x+m)1的頂點坐標(biāo)為(﹣1,0),∴m=1,∴二次函數(shù)y=a(x+1)1,把點A(﹣1,﹣)代入得a=﹣,則拋物線的解析式為:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,點B(1,﹣1)不在這個函數(shù)的圖象上;(3)根據(jù)題意設(shè)平移后的解析式為y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以拋物線向左平移1個單位或平移5個單位函數(shù),即可過點B.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標(biāo)特征,二次函數(shù)的性質(zhì)以及圖象與幾何變換.22、(1)25π;(2)CD1=,CD2=7【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進(jìn)行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當(dāng)點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當(dāng)點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質(zhì)等知識.利用分類討論思想并合理構(gòu)造輔助線是解題的關(guān)鍵.23、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】

如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內(nèi)角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據(jù)三角形內(nèi)角和得到∠1+∠2+∠BOC=180°,利用等式的性質(zhì)進(jìn)行變換可得∠BOC=90°+∠A,然后根據(jù)此結(jié)論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.主要用在求三角形中角的度數(shù):①直接根據(jù)兩已知角求第三個角;②依據(jù)三角形中角的關(guān)系,用代數(shù)方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.24、(1)150,(2)36°,(3)1.【解析】

(1)根據(jù)圖中信息列式計算即可;(2)求得“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計圖即可;(3)360°×乒乓球”所占的百分比即可得到結(jié)論;(4)根據(jù)題意計算即可.【詳解】(1)m=21÷14%=150,(2)“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計圖如圖所示;(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為360°×=36°;(4)1200×20%=1人,答:估計該校約有1名學(xué)生最喜愛足球活動.故答案為150,36°,1.【點睛】本題考查了條形統(tǒng)計圖,觀察條形統(tǒng)計圖、扇形統(tǒng)計圖獲得有效信息是解題關(guān)鍵.25、(1)見解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據(jù)切線長定理得到FD=FC,然后證明∠3=∠A得到FD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論