廣東省湛江市麻章區(qū)第一中學(xué)2021年高三數(shù)學(xué)文聯(lián)考試卷含解析_第1頁(yè)
廣東省湛江市麻章區(qū)第一中學(xué)2021年高三數(shù)學(xué)文聯(lián)考試卷含解析_第2頁(yè)
廣東省湛江市麻章區(qū)第一中學(xué)2021年高三數(shù)學(xué)文聯(lián)考試卷含解析_第3頁(yè)
廣東省湛江市麻章區(qū)第一中學(xué)2021年高三數(shù)學(xué)文聯(lián)考試卷含解析_第4頁(yè)
廣東省湛江市麻章區(qū)第一中學(xué)2021年高三數(shù)學(xué)文聯(lián)考試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省湛江市麻章區(qū)第一中學(xué)2021年高三數(shù)學(xué)文聯(lián)考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知向量,且,則的最大值為(

)A.2

B.4

C.

D.參考答案:D試題分析:設(shè)向量對(duì)應(yīng)點(diǎn)分別為,向量對(duì)應(yīng)點(diǎn),由知點(diǎn)在以為圓心,半徑為的圓上.∴∵又∵,∴,∴,∴,∴,∴,∴,故選D.考點(diǎn):1、平面向量數(shù)量積公式;2、數(shù)量的模及向量的幾何意義.2.

已知函數(shù)在上是減函數(shù),且對(duì)任意的總有則實(shí)數(shù)的取值范圍為(

)A.

B.

C.

D.參考答案:B3.四面體A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,則四面體A﹣BCD外接球的表面積為()A.50π B.100π C.200π D.300π參考答案:C【考點(diǎn)】LE:棱柱、棱錐、棱臺(tái)的側(cè)面積和表面積.【分析】由題意可采用割補(bǔ)法,考慮到四面體ABCD的四個(gè)面為全等的三角形,所以可在其每個(gè)面補(bǔ)上一個(gè)以10,2,2為三邊的三角形作為底面,且以分別為x,y,z,長(zhǎng)、兩兩垂直的側(cè)棱的三棱錐,從而可得到一個(gè)長(zhǎng)、寬、高分別為x,y,z的長(zhǎng)方體,由此能求出球的半徑,進(jìn)而求出球的表面積.【解答】解:由題意可采用割補(bǔ)法,考慮到四面體ABCD的四個(gè)面為全等的三角形,所以可在其每個(gè)面補(bǔ)上一個(gè)以10,2,2為三邊的三角形作為底面,且以分別為x,y,z,長(zhǎng)、兩兩垂直的側(cè)棱的三棱錐,從而可得到一個(gè)長(zhǎng)、寬、高分別為x,y,z的長(zhǎng)方體,并且x2+y2=100,x2+z2=136,y2+z2=164,設(shè)球半徑為R,則有(2R)2=x2+y2+z2=200,∴4R2=200,∴球的表面積為S=4πR2=200π.故選C.4.比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是(

)A.乙的邏輯推理能力優(yōu)于甲的邏輯推理能力B.甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值C.乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平D.甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值參考答案:C對(duì)于選項(xiàng)A,甲的邏輯推理能力指標(biāo)值為4,優(yōu)于乙的邏輯推理能力指標(biāo)值為3,所以該命題是假命題;對(duì)于選項(xiàng)B,甲的數(shù)學(xué)建模能力指標(biāo)值為3,乙的直觀想象能力指標(biāo)值為5,所以乙的直觀想象能力指標(biāo)值優(yōu)于甲的數(shù)學(xué)建模能力指標(biāo)值,所以該命題是假命題;對(duì)于選項(xiàng)C,甲的六維能力指標(biāo)值的平均值為,乙的六維能力指標(biāo)值的平均值為,因?yàn)椋赃x項(xiàng)C正確;對(duì)于選項(xiàng)D,甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值為4,甲的直觀想象能力指標(biāo)值為5,所以甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值不優(yōu)于甲的直觀想象能力指標(biāo)值,故該命題是假命題.故選C.5.如果{an}不是等差數(shù)列,但若,使得,那么稱{an}為“局部等差”數(shù)列.已知數(shù)列{xn}的項(xiàng)數(shù)為4,記事件A:集合,事件B:{xn}為“局部等差”數(shù)列,則條件概率(

)A. B. C. D.參考答案:C由題意知,事件共有=120個(gè)基本事件,事件“局部等差”數(shù)列共有以下24個(gè)基本事件,(1)其中含1,2,3的局部等差的分別為1,2,3,5和5,1,2,3和4,1,2,3共3個(gè),含3,2,1的局部等差數(shù)列的同理也有3個(gè),共6個(gè).含3,4,5的和含5,4,3的與上述(1)相同,也有6個(gè).含2,3,4的有5,2,3,4和2,3,4,1共2個(gè),含4,3,2的同理也有2個(gè).含1,3,5的有1,3,5,2和2,1,3,5和4,1,3,5和1,3,5,4共4個(gè),含5,3,1的也有上述4個(gè),共24個(gè),=.故選C.

6.設(shè)直線l:y=2x+2,若l與橢圓x2+=1的交點(diǎn)為A、B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為﹣1的點(diǎn)P的個(gè)數(shù)為(

) A.0 B.1 C.2 D.3參考答案:D考點(diǎn):直線與圓錐曲線的關(guān)系.專題:圓錐曲線的定義、性質(zhì)與方程.分析:由直線l的方程與橢圓x2+=1的方程組成方程組,求出弦長(zhǎng)AB,計(jì)算AB邊上的高h(yuǎn),設(shè)出P的坐標(biāo),由點(diǎn)P到直線y=2x+2的距離d=h,結(jié)合橢圓的方程,求出點(diǎn)P的個(gè)數(shù)來(lái).解答: 解:由直線l的方程與橢圓x2+=1的方程組成方程組,解得或,則A(0,2),B(﹣1,0),∴AB==,∵△PAB的面積為﹣1,∴AB邊上的高為h==.設(shè)P的坐標(biāo)為(a,b),代入橢圓方程得:a2+=1,P到直線y=2x+2的距離d==,即2a﹣b=2﹣4或2a﹣b=﹣2;聯(lián)立得:①或②,①中的b消去得:2a2﹣2(﹣2)a+5﹣4=0,∵△=4(﹣2)2﹣4×2×(5﹣4)>0,∴a有兩個(gè)不相等的根,∴滿足題意的P的坐標(biāo)有2個(gè);由②消去b得:2a2+2a+1=0,∵△=(2)2﹣4×2×1=0,∴a有兩個(gè)相等的根,滿足題意的P的坐標(biāo)有1個(gè).綜上,使△PAB面積為﹣1的點(diǎn)P的個(gè)數(shù)為3.故選:D.點(diǎn)評(píng):本題考查了直線與橢圓方程的綜合應(yīng)用問題,考查了直線方程與橢圓方程組成方程組的求弦長(zhǎng)的問題,是綜合性題目.7.定義在(—,0)(0,+)上的函數(shù),如果對(duì)于任意給定的等比數(shù)列{},{)仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(—,0)(0,+)上的如下函數(shù):①=:②;③;④.則其中是“保等比數(shù)列函數(shù)”的的序號(hào)為(

A.①②

B.③④

C.①③

D.②④參考答案:C略8.已知等比數(shù)列的公比,且成等差數(shù)列,則的前8項(xiàng)和為(

A.127 B.255 C.511

D.1023參考答案:B略9.某程序框圖如圖所示,其中,若輸出的,則判斷框內(nèi)應(yīng)填入的條件為A.n<2020?

B.n≤2020?

C.n>2020?

D.n≥2020?參考答案:A10.《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,書中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛減一,即得.”通過對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時(shí),均可采用此方法求解,如圖是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為(

)A.23

B.47

C.24

D.48參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.若,則=

參考答案:略12.把5件不同產(chǎn)品擺成一排,若產(chǎn)品A與產(chǎn)品B相鄰,且產(chǎn)品A與產(chǎn)品C不相鄰,則不同的擺法有_______種.參考答案:3613.將名教師,名學(xué)生分成個(gè)小組,安排到甲、乙兩地參加活動(dòng),每個(gè)小組由名教師和名學(xué)生組成,不同的安排方案共有__________種.參考答案:【知識(shí)點(diǎn)】排列、組合J2【答案解析】12

第一步,為甲地選一名老師,有=2種選法;第二步,為甲地選兩個(gè)學(xué)生,有=6種選法;第三步,為乙地選1名教師和2名學(xué)生,有1種選法,故不同的安排方案共有2×6×1=12種,故選A.【思路點(diǎn)撥】將任務(wù)分三步完成,在每步中利用排列和組合的方法計(jì)數(shù),最后利用分步計(jì)數(shù)原理,將各步結(jié)果相乘即可得結(jié)果14.曲線在點(diǎn)(0,1)處的切線方程是________________.參考答案:.15.已知雙曲線C:的左、右頂點(diǎn)分別為A,B,點(diǎn)P在曲線C上,若中,,則雙曲線C的漸近線方程為______.參考答案:【分析】利用已知條件求出P的坐標(biāo)(x,y)滿足的條件,然后求解a,b的關(guān)系即可,【詳解】如圖,過B作BM⊥x軸,∵∠PBA=∠PAB,則∠PAB=∠PBM,∴∠PAB+∠PBx.即kPA?kPB=1.設(shè)P(x,y),又A(﹣a,0),B(a,0).,∴x2﹣y2=a2,∴a=b,則雙曲線C的漸近線方程為y=±x,故答案為:y=±x【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.屬于中檔題.16.理:已知實(shí)數(shù)、滿足,則的取值范圍是

.參考答案:17.下面有五個(gè)命題:①函數(shù)y=sin4x-cos4x的最小正周期是.②終邊在y軸上的角的集合是③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有三個(gè)公共點(diǎn).④把函數(shù)⑤函數(shù)其中真命題的序號(hào)是

(寫出所有真命題的編號(hào))參考答案:①④略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過程或演算步驟18.21.(本小題滿分14分)設(shè)函數(shù)常數(shù)且a∈(0,1).(1)

當(dāng)a=時(shí),求f(f());(2)

若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為f(x)的二階有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;(3)

對(duì)于(2)中x1,x2,設(shè)A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為s(a),求s(a)在區(qū)間[,]上的最大值和最小值。參考答案:(1)當(dāng)時(shí),(當(dāng)時(shí),由解得x=0,由于f(0)=0,故x=0不是f(x)的二階周期點(diǎn);當(dāng)時(shí)由解得因故是f(x)的二階周期點(diǎn);當(dāng)時(shí),由解得因故不是f(x)的二階周期點(diǎn);當(dāng)時(shí),解得因故是f(x)的二階周期點(diǎn)。因此,函數(shù)有且僅有兩個(gè)二階周期點(diǎn),,。(3)由(2)得

則因?yàn)閍在[,]內(nèi),故,則故

19.(本題滿分12分)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且.(1)求角C;(2)若,,求△ABC的面積.參考答案:(1)在中,由正弦定理得:,整理得,由余弦定理得,又因?yàn)椋?(2)由得,所以由正弦定理:,解得所以的面積

20.(本小題滿分12分)

已知點(diǎn),點(diǎn)在軸上,點(diǎn)在軸的正半軸上,點(diǎn)在直線上,且滿足.(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求點(diǎn)的軌跡的方程;(Ⅱ)設(shè)、為軌跡上兩點(diǎn),且>1,>0,,求實(shí)數(shù),使,且.參考答案:解析:(Ⅰ)設(shè)點(diǎn),由得.

…………2分 由,得,即.

……………4分 又點(diǎn)在軸的正半軸上,∴.故點(diǎn)的軌跡的方程是.…………6分(Ⅱ)由題意可知為拋物線:的焦點(diǎn),且、為過焦點(diǎn)的直線與拋物線的兩個(gè)交點(diǎn),所以直線的斜率不為.……7分

當(dāng)直線斜率不存在時(shí),得,不合題意;……8分

當(dāng)直線斜率存在且不為時(shí),設(shè),代入得

,

則,解得.…………10分

代入原方程得,由于,所以,由,

得,∴.……………………12分21.[選修4-5:不等式選講]已知函數(shù)f(x)=|x﹣a|﹣|x+3|,a∈R.(Ⅰ)當(dāng)a=﹣1時(shí),解不等式f(x)≤1;(Ⅱ)若當(dāng)x∈[0,3]時(shí),f(x)≤4,求a的取值范圍.參考答案:【考點(diǎn)】絕對(duì)值不等式的解法.【分析】(Ⅰ)當(dāng)a=﹣1時(shí),不等式為|x+1|﹣|x+3|≤1,對(duì)x的取值范圍分類討論,去掉上式中的絕對(duì)值符號(hào),解相應(yīng)的不等式,最后取其并集即可;(Ⅱ)依題意知,|x﹣a|≤x+7,由此得a≥﹣7且a≤2x+7,當(dāng)x∈[0,3]時(shí),易求2x+7的最小值,從而可得a的取值范圍.【解答】解:(Ⅰ)當(dāng)a=﹣1時(shí),不等式為|x+1|﹣|x+3|≤1.當(dāng)x≤﹣3時(shí),不等式化為﹣(x+1)+(x+3)≤1,不等式不成立;當(dāng)﹣3<x<﹣1時(shí),不等式化為﹣(x+1)﹣(x+3)≤1,解得﹣≤x<﹣1;當(dāng)x≥﹣1時(shí),不等式化為(x+1)﹣(x+3)≤1,不等式必成立.綜上,不等式的解集為[﹣,+∞).…(Ⅱ)當(dāng)x∈[0,3]時(shí),f(x)≤4即|x﹣a|≤x+7,由此得a≥﹣7且a≤2x+7.當(dāng)x∈[0,3]時(shí),2x+7的最小值為7,所以a的取值范圍是[﹣7,7].…22.(本小題滿分13分)汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛汽車,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:A型車出租天數(shù)1234567車輛數(shù)51030351532B型車出租天數(shù)1234567車輛數(shù)1420201615105

(I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種車型中購(gòu)買一輛,請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買哪一種車型,并說(shuō)明你的理由.參考答案:解:(I)這輛汽車是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論