山東省青島市平度一中2023年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
山東省青島市平度一中2023年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
山東省青島市平度一中2023年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
山東省青島市平度一中2023年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
山東省青島市平度一中2023年高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知,則不等式的解集是()A. B. C. D.3.在中,內(nèi)角所對(duì)的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列4.若復(fù)數(shù)滿足,則()A. B. C. D.5.木匠師傅對(duì)一個(gè)圓錐形木件進(jìn)行加工后得到一個(gè)三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.6.已知F是雙曲線(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.27.若函數(shù)滿足,且,則的最小值是()A. B. C. D.8.已知集合,則()A. B. C. D.9.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”這個(gè)問(wèn)題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這位女子每天分別織布多少?根據(jù)上述問(wèn)題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.110.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.11.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.12.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β二、填空題:本題共4小題,每小題5分,共20分。13.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.14.有編號(hào)分別為1,2,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),則取出球的編號(hào)互不相同的概率為_______________.15.設(shè),則“”是“”的__________條件.16.已知函數(shù),曲線與直線相交,若存在相鄰兩個(gè)交點(diǎn)間的距離為,則可取到的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.18.(12分)已知函數(shù)有兩個(gè)極值點(diǎn),.(1)求實(shí)數(shù)的取值范圍;(2)證明:.19.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點(diǎn).(1)證明:平面平面;(2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.20.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.21.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個(gè)零點(diǎn).22.(10分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過(guò),再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對(duì)應(yīng)的平面區(qū)域,如圖所示:其中,直線過(guò)定點(diǎn),當(dāng)時(shí),不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,只需直線的斜率,解得.綜上可得實(shí)數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問(wèn)題,分類討論與數(shù)形結(jié)合思想,屬于中檔題2、A【解析】

構(gòu)造函數(shù),通過(guò)分析的單調(diào)性和對(duì)稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動(dòng)一個(gè)單位得到,的定義域?yàn)?,且,所以為奇函?shù),圖像關(guān)于原點(diǎn)對(duì)稱,所以圖像關(guān)于對(duì)稱.不等式等價(jià)于,等價(jià)于,注意到,結(jié)合圖像關(guān)于對(duì)稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對(duì)稱性解不等式,屬于中檔題.3、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.4、C【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:由,得,∴.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.5、C【解析】

由三視圖知幾何體是一個(gè)從圓錐中截出來(lái)的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點(diǎn)睛】本題考查了三視圖還原幾何體及體積求解問(wèn)題,考查了學(xué)生空間想象,數(shù)學(xué)運(yùn)算能力,難度一般.6、D【解析】

分析可得,再去絕對(duì)值化簡(jiǎn)成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時(shí),等式不是雙曲線的方程;當(dāng)時(shí),,可化為,可得虛半軸長(zhǎng),所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D【點(diǎn)睛】本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.7、A【解析】

由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時(shí),取得最小值.故選:A.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及對(duì)數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計(jì)算能力,屬于中等題.8、B【解析】

計(jì)算,再計(jì)算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點(diǎn)睛】本題考查了集合的交集,意在考查學(xué)生的計(jì)算能力.9、B【解析】

將問(wèn)題轉(zhuǎn)化為等比數(shù)列問(wèn)題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問(wèn)題.【詳解】根據(jù)實(shí)際問(wèn)題可以轉(zhuǎn)化為等比數(shù)列問(wèn)題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問(wèn)題很有幫助.10、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.11、B【解析】

由模長(zhǎng)公式求解即可.【詳解】,當(dāng)時(shí)取等號(hào),所以本題答案為B.【點(diǎn)睛】本題考查向量的數(shù)量積,考查模長(zhǎng)公式,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.12、B【解析】

根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將四面體補(bǔ)充為長(zhǎng)寬高分別為的長(zhǎng)方體,體對(duì)角線即為外接球的直徑,從而得解.【詳解】采用補(bǔ)體法,由空間點(diǎn)坐標(biāo)可知,該四面體的四個(gè)頂點(diǎn)在一個(gè)長(zhǎng)方體上,該長(zhǎng)方體的長(zhǎng)寬高分別為,長(zhǎng)方體的外接球即為該四面體的外接球,外接球的直徑即為長(zhǎng)方體的體對(duì)角線,所以球半徑為,體積為.【點(diǎn)睛】本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過(guò)補(bǔ)體得到長(zhǎng)方體的外接球從而得解,屬于基礎(chǔ)題.14、【解析】試題分析:從編號(hào)分別為1,1,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),有種不同的結(jié)果,由于是隨機(jī)取出的,所以每個(gè)結(jié)果出現(xiàn)的可能性是相等的;設(shè)事件為“取出球的編號(hào)互不相同”,則事件包含了個(gè)基本事件,所以.考點(diǎn):1.計(jì)數(shù)原理;1.古典概型.15、充分必要【解析】

根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點(diǎn)睛】本題考查充分必要條件的判斷,可利用定義來(lái)判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來(lái)判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來(lái)判斷,本題屬于容易題.16、4【解析】

由于曲線與直線相交,存在相鄰兩個(gè)交點(diǎn)間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結(jié)合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點(diǎn)睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用及三角方程的求解,熟練應(yīng)用三角函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵,考查了推理能力和計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn)、,聯(lián)立直線與橢圓的方程,列出韋達(dá)定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因?yàn)?,,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因?yàn)椋?,所?即,將其整理為.因?yàn)?,所以?所以,即.【點(diǎn)睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,考查計(jì)算能力,屬于中等題.18、(1)(2)證明見解析【解析】

(1)先求得導(dǎo)函數(shù),根據(jù)兩個(gè)極值點(diǎn)可知有兩個(gè)不等實(shí)根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點(diǎn)的情況,即可由零點(diǎn)的情況確定的取值范圍;(2)根據(jù)極值點(diǎn)定義可知,,代入不等式化簡(jiǎn)變形后可知只需證明;構(gòu)造函數(shù),并求得,進(jìn)而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進(jìn)而可得,即可由函數(shù)性質(zhì)得,進(jìn)而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因?yàn)榇嬖趦蓚€(gè)極值點(diǎn),,所以有兩個(gè)不等實(shí)根.設(shè),所以.①當(dāng)時(shí),,所以在上單調(diào)遞增,至多有一個(gè)零點(diǎn),不符合題意.②當(dāng)時(shí),令得,0減極小值增所以,即.又因?yàn)?,,所以在區(qū)間和上各有一個(gè)零點(diǎn),符合題意,綜上,實(shí)數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因?yàn)?,,所?設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因?yàn)?,不妨設(shè),設(shè),,則,當(dāng)時(shí),,,所以,所以在上是增函數(shù),所以,所以,即.因?yàn)?,所以,所?因?yàn)?,,且在上是減函數(shù),所以,即,所以原命題成立,得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點(diǎn)偏移證明不等式成立的應(yīng)用,是高考的常考點(diǎn)和熱點(diǎn),屬于難題.19、(1)證明見解析;(2).【解析】

(1)由平面幾何知識(shí)可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標(biāo)系,可求得面PAB的法向量,再運(yùn)用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點(diǎn),,故面,又且,故四邊形是平行四邊形,面,又,是面內(nèi)的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設(shè)是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點(diǎn)睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.20、(1);(2)【解析】

(1)利用零點(diǎn)分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當(dāng)且僅當(dāng)時(shí)取“=”).所以的最小值為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用柯西不等式求最值.解絕對(duì)值不等式的基本方法有零點(diǎn)分段討論法、圖象法、平方法等,利用零點(diǎn)分段討論法時(shí)注意分類點(diǎn)的合理選擇,利用平方去掉絕對(duì)值符號(hào)時(shí)注意代數(shù)式的正負(fù),而利用圖象法求解時(shí)注意圖象的正確刻畫.利用柯西不等式求最值時(shí)注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論