版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
--絕密用前201年普通高等學(xué)校招生全國統(tǒng)一考試(浙卷)數(shù)學(xué)【卷評分(分一、選擇:本大題共1小題,每小題4分,共4分。在每題給出的四個選項(xiàng),只有一項(xiàng)是符合題目要求的。.已知集合{x{02}那么
QA.(1,2)
?B.
C.(?
(1,2)【答案A【考點(diǎn)】集合運(yùn)算【名師點(diǎn)睛】對于集合的交、并、補(bǔ)運(yùn)算問,應(yīng)先把集合化簡再計(jì)常常借助數(shù)軸或韋恩圖處理.x22.橢圓的離心率是94A.
133
??
53
?
C.
.D???
【答案B【解析】試題分析:e
95,選B.3【考點(diǎn)】橢的簡單幾何性質(zhì)【名師點(diǎn)睛】解決橢圓和雙曲線的離心率的求值及范圍問,其關(guān)鍵就是確立一個關(guān)于a,b,的程不等式,再根據(jù)ac的系消掉b得a的系,建立關(guān)于ab,的程或不式充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.3.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位cm)--
--(第題)
?1
.B
.C??
33??D2
【答案A【考點(diǎn)】三圖【名師點(diǎn)睛】思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)遵循“長對正,高齊寬相等”基本原則其內(nèi)涵為正視圖的高幾何體的,是幾何體的長視圖的長是幾何體的長寬是幾何體的寬;側(cè)視圖的高是幾何體的寬是幾何體的寬由視圖畫出直觀圖的步驟和思考方法、首先看俯視圖根據(jù)俯視圖畫出幾何體地面的直觀;觀正視圖和側(cè)視圖找到幾何體前左右高度;、畫出整體然后再根據(jù)三視圖進(jìn)行調(diào)整.4.若
,y滿約條件
,取值范圍是A[
?B.[0,]
C,
[4,【答案】D【解析】試題分析:如圖,行域?yàn)橐婚_放區(qū)域,所以直線過點(diǎn)(時取最小值4,無最大值,選D.--
5nn4645nn4645【考點(diǎn)】簡單線性規(guī)劃【名師點(diǎn)睛】本題主要考查線性規(guī)劃問題首由不等式組作出相應(yīng)的可行域作時可將不等式By轉(zhuǎn)為y(ykx取方“取方,并明確可行對應(yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線其次確定目標(biāo)函數(shù)的幾何意義,求直線的截距、兩點(diǎn)間距離的平方線斜率是到直線的距離等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法域圍若函數(shù)f()2
+x+b在間0,1]的最大值是M最小值是m則M–mA.與a有,且與關(guān)
與a有關(guān)但與無關(guān)C.與無關(guān),且b無關(guān)【答案B
?
D.a(chǎn)關(guān)但與b有【考點(diǎn)】二次函數(shù)的最值【名師點(diǎn)睛于次函數(shù)的最或值域問題常先判斷函數(shù)圖象對稱軸與所給自變量閉區(qū)間的系,結(jié)合圖象,當(dāng)函數(shù)圖象開口向上時,對稱軸在區(qū)間的左邊,則函數(shù)在所給區(qū)間內(nèi)單調(diào)遞增;若稱軸在區(qū)間的右邊,則函數(shù)在所給區(qū)間內(nèi)單調(diào)遞減;若對稱軸在區(qū)間函數(shù)圖象頂點(diǎn)的縱坐標(biāo)為最小值,區(qū)間端點(diǎn)距離對稱軸較遠(yuǎn)的一端取得函數(shù)的最大值.6.已知等差數(shù){}的公差為,前項(xiàng)為,“>”是+>2”A.充分不必要條件
?B.必要不充分條件?件要必分充C.
?D既充分也不必要條件【答案】C【解析】試題分析:由d2(5ad),可d0時SS,即反之,若,,以“”是“S>2”充要條件,選C.--
ii1--ii1【考點(diǎn)】等差數(shù)列、充分必要【名師點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)公式,過套入公式與簡單運(yùn)算,知S
結(jié)合充分必要性的判斷若pq則p是q的充分條件,若q,則是的必要條件,該題“0”“”,故為充要條.函數(shù)yf(x)的導(dǎo)函數(shù)yf
的圖象如圖所示,則函數(shù)=的圖象可能是(第題圖)【答案D【考點(diǎn)】導(dǎo)數(shù)的圖象【名師點(diǎn)睛題要考查導(dǎo)數(shù)象與原函數(shù)圖象的關(guān)系導(dǎo)函數(shù)圖象與x軸交點(diǎn)為,圖象在
兩側(cè)附近連續(xù)分布于x軸下方,則為函數(shù)單調(diào)性的拐點(diǎn)運(yùn)導(dǎo)數(shù)知識來討論數(shù)單調(diào)性時導(dǎo)函數(shù)f'()正負(fù),得出原函數(shù)f(x)單調(diào)區(qū)間..已知隨機(jī)變量足P(,(–i.若0<p<piii
則A(<),D(()
(<
D()C.(>E(,D(<D)【答案A【解析】
D.
E>(),>)試題分析∵E
)p(
)p,E(E),∵
)pD(
)(1p),∴(
)
)pp)(1pp)故選A.【考點(diǎn)】兩分布--
--【名師點(diǎn)睛】求離散型隨機(jī)變量的分布列,首先要根據(jù)具體情況確定X取值情況然后利用排列組合與概率知識求出X取個值時的概率對于服從某些特殊分布的機(jī)變量,其布列可以直接應(yīng)用公式給出,中超幾何分布描述的是不放回抽樣問題,隨機(jī)變量為抽到的某類個體的個數(shù)由知本題隨機(jī)變量
i
服從兩點(diǎn)分由兩點(diǎn)分布數(shù)學(xué)期望與方的公式可得A正確.如圖,已知正四面體D(所有棱長均相等的三棱錐),PR分別為A,,CA上的點(diǎn),AP=PB,分別記二面DPR,D–PQRDQR的面角為,,則RAγ<?【答案B
(第題)B<<??Cα<<?Dβγα【考點(diǎn)】空間角(二面角)【名師點(diǎn)睛】立體幾何是高中數(shù)學(xué)中的重要內(nèi)容也是高考重點(diǎn)考查的考點(diǎn)與熱點(diǎn).這類題的設(shè)置一般有線面位置關(guān)系的證明與角度距離的計(jì)算等兩類問題.解第一類問題時一般要借助線面平行與垂直的判定定理進(jìn)行答二類問題時先建立空間直角坐標(biāo)運(yùn)用空間向量的坐標(biāo)形式及數(shù)量積公式進(jìn)行求解.10.如已知平面四邊ABCAB⊥=A=2CD=3AC與B交于點(diǎn)O記IOB,IIOCOD則--
--(第題)AII
?BII
C.III
??
D.II
【答案C【考點(diǎn)】平向量的數(shù)量積運(yùn)【名師點(diǎn)睛】平面向量的計(jì)算問題,往往有兩種形,是利用數(shù)量積的定義,是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知.本題通過所給條件結(jié)合數(shù)量積運(yùn)算,易得AOBCOD90,由AB=BC=AD2,可得,OBOD,進(jìn)而得到III.分(共0分)二、填空題本大題共7小題,多空題每題6分,單題每題分,共36分。1.我國古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把的值計(jì)算到任意精.祖沖之繼承并發(fā)展了“割圓術(shù)將的精到小數(shù)點(diǎn)后七位,其結(jié)果領(lǐng)先世界一千多“割圓術(shù)”的第一步是計(jì)算單位圓內(nèi)接正六邊形的面積S,
.【答案】
332【解析】13試題分析:將正六邊形分割為6個邊三角,則S).【考點(diǎn)】數(shù)學(xué)文化【名師點(diǎn)睛】本題粗略看起來文字量,其本質(zhì)為計(jì)算單位圓內(nèi)接正六邊形的面將正六邊形分割為6--
--個等邊三角形,定6個邊三角形的面積即可其對文字信息的讀取及提取有用信息方面至關(guān)重,考生面對這方面題目時應(yīng)多加耐仔細(xì)分析題目中所描述問題的本質(zhì),結(jié)合所學(xué)進(jìn)行有目的的求解.12.已知a∈Rai
4i(i是虛單)則
,a=
【答案】5,2【考點(diǎn)】復(fù)數(shù)的基本運(yùn)算和復(fù)數(shù)的概念【名師點(diǎn)睛】本題重點(diǎn)考查復(fù)數(shù)的基本運(yùn)算和復(fù)數(shù)的概念屬基本題.首先對于復(fù)數(shù)的則運(yùn)算,要切實(shí)掌握其運(yùn)算技巧和常規(guī)思路,如(i)(ci))ad)i,(a,d).
其次要熟悉復(fù)數(shù)相關(guān)基本概如復(fù)數(shù)ai(abR)的部為a、部為、為a
、對應(yīng)點(diǎn)為(a,
b)、共軛為i
等.13.已知多項(xiàng)式((2)
,a=___,___(dá)__.【答案】16,4【解析】試題分析:由二式展開式可得通項(xiàng)公式為:C
r
rC
r
r
,分別取r和rm得a,r,得a
.【考點(diǎn)】二項(xiàng)式定理【名師點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)與系數(shù),屬于簡單題.二項(xiàng)開式定理的問題也是考命題熱點(diǎn)之一關(guān)二項(xiàng)式定理命題方向比較明,主要從以下幾個方面命題考查二項(xiàng)展開式的通項(xiàng)公式r
r
r
;(可考查某一項(xiàng)也可考查某一項(xiàng)的系數(shù))考查各項(xiàng)系數(shù)和和各項(xiàng)的二項(xiàng)式系數(shù)和)二項(xiàng)式定理的應(yīng)..知eq\o\ac(△,)=C=4BC=2DAB延長線上一點(diǎn)BD=2,連結(jié),BC的積是______s∠=____(dá)【答案】
151024--
--【考點(diǎn)】解三角形【名師點(diǎn)睛】利用正、余弦定理解決實(shí)際問題的一般思路實(shí)際問題經(jīng)抽象概括后,已知量與未知量全部集中在一個三角形中以利用正弦定理或余弦定理求解2)實(shí)際問題經(jīng)抽象概括后知量與未知量涉及兩個或兩個以上三角形,這需作出這些三角形,先夠條件的三角形逐步解其他三角形,有時需要設(shè)出未知量,從幾個三角形中列出方程(組解方程組得出所要的.5.已知向a,足ab2,則aa的小值是__最大值是______.【答案】4,5【解析】試題分析設(shè)向量,的角為由余弦定理:
a1
cos
a1
則:4cos
令y
4cos
,y
25
據(jù)此可得:a
20a
16,
即的小值是4,大值是2【考點(diǎn)】平面向量模長運(yùn)算【名師點(diǎn)睛】本題通過設(shè)向量a的夾角為,合模長公式,可4cos
再用三角函數(shù)的有界性求出最大、最小值,屬中檔題,學(xué)生--
--的轉(zhuǎn)化能力和最值處理能力有一定的要求..6男女共8名生中選出隊(duì)長1人,副隊(duì)長人,普通隊(duì)員2組成人服務(wù)要求服務(wù)隊(duì)中至少有名生,共有_不同的選(數(shù)字作)【答案】660【考點(diǎn)】排列組合的應(yīng)用【名師點(diǎn)睛】本題主要考查分類計(jì)數(shù)原理與分步計(jì)數(shù)原理及排列組合的應(yīng)用,有關(guān)排列組合的合問題,往往是兩個原理及排列組合問題交叉應(yīng)用才能解決問題,解答這類問題理解題意很關(guān),定多讀題才能挖掘出隱含條.解題過程中要首先分清“是分類還是分步”、“是排列還是組合”,在應(yīng)分類計(jì)數(shù)加法原理討論既不能重復(fù)交叉討論又不能遺漏樣才能提高準(zhǔn)確.在些特定問題上也可充分考慮“正難則反”的思維方7.已知R函數(shù)f(x)x
4
在間[1上的最大值是則a的值范圍是__(dá)______.【答案】]【解析】試題分析:xx①當(dāng)時,
f
,x函數(shù)的最大值2a
舍;②當(dāng)時f
,時命題成立;x③當(dāng)時a,5a5或綜上可得,實(shí)數(shù)a取值范圍是.【考點(diǎn)】基本不等式、函數(shù)最值
解得--
或a
44【名師點(diǎn)睛】本題利用基本不等由
--,得
通對解析式中絕對值符的處理,進(jìn)行有效的分類討:;a;③4,題的難點(diǎn)在于對分界點(diǎn)的確認(rèn)及討論屬于難解題時,應(yīng)仔細(xì)對各種情況逐一進(jìn)行討.三、解答題:本大題共5小題,74分解答應(yīng)寫出文字說明、證明過程或演算步.18.本題滿分14分)已知函數(shù)f(x)=sin–3sin
xcos
x(xR.(Ⅰ)求f(
23
)
的值(Ⅱ)求f()的最小正周期及單調(diào)遞增區(qū)間.【答案;(Ⅱ最小正周期為,調(diào)遞增區(qū)間為[Z3試題解析:(Ⅰ)由
21cos32f
231)))3).322得(Ⅱ)由cos2cos
2f).3與x2sinxcos得f(3sin.x)
所以f(x)的小正周期是.由正弦函數(shù)的性質(zhì)得解得所以f()的單調(diào)遞增區(qū)間是
3kZ,6Z,632[kZ6--
--【考點(diǎn)】三角函數(shù)求值、三角函數(shù)的性質(zhì)【名師點(diǎn)睛】本題主要考查了三角函數(shù)的化簡,以及函數(shù)
的性質(zhì),是高考中的??贾R點(diǎn),屬于基礎(chǔ)題調(diào)礎(chǔ)重要性;三角函數(shù)解答題,涉及到周期單調(diào)性單區(qū)間以及最值等考點(diǎn)時,都屬于考查三角函數(shù)的性首先應(yīng)把它化為三角函數(shù)基本形式即
然后利用三角函數(shù)
sinu
的性質(zhì)求解..本題滿分5分)如,已知四棱錐PCDeq\o\ac(△,,)PAD以AD為邊的等腰直角三角CDA,PC=2DC=,E為PD的點(diǎn).PE
BC/AD,A
DB(第題圖)
C(Ⅰ)證明:/
平面;(Ⅱ)求直線CE與面PB所角的正弦值.【答案】(Ⅰ)見解;(Ⅱ)
28
試題解析--
--PM(Ⅰ)如圖,設(shè)A中點(diǎn)為F,接E,B.因?yàn)椋?分為D,A中,所以EF//AD且EF
12
,又因?yàn)锽C//AD,BC
12
,以EF//BC且EF,即四邊形BC為行四邊形,所以CE/BF因此CE/
平面.E由DCNA的中點(diǎn)得B⊥AD.所以⊥平面PB,由BC/AD得B⊥面N那么--
--平面PBC⊥平面.過點(diǎn)Q作的線,垂足H,連接MHMH是在平面的射影,所以QH是線CE與面所的角設(shè)CD=.在△PD中由C2,D=2得=,在eq\o\ac(△,PB)eq\o\ac(△,)N,P=N==3得QH在eq\o\ac(△,Rt)中Q=,MQ,所以
,n∠QMH=
28
,所以直線E平面PC所角的正弦值是
28
【考點(diǎn)】證明線面平行,求線面角【名師點(diǎn)睛】本題主要考查線面平行的判定定理、線面垂直的判定定理及面面垂直的判定定理屬于中檔題證明線面平行的常用方:①利用線面平行的判定定,用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)者構(gòu)造平行四邊形、尋找比例式證明兩直線平②利用面面平行的性質(zhì),即兩面平在其中一平面內(nèi)的直線平行于另一平面.本題(1是就是利用方法①證明的.另外,題也可利用空間向量求解線面..本題滿分15分已知函數(shù)f(x)(–x)
(
12
).(Ⅰ)求f()的導(dǎo)函數(shù)(Ⅱ)求fx)在區(qū)間[上的取值范圍.【答案】(f'())(1
22
)e
;(Ⅱ)
e
].【解析】試題分析主考查函數(shù)的(小值,數(shù)的運(yùn)算及其應(yīng)用考分析問題和解決問題的能力。滿分5分。(Ⅰ)利用導(dǎo)法則及求導(dǎo)公式,可求得f(x)的數(shù);(Ⅱ)令f'(),得x或數(shù)()的調(diào)區(qū)間,結(jié)合區(qū)間端點(diǎn)值求解函數(shù)f(x)取值范圍.
52
,進(jìn)而判斷函--
--(Ⅱ)由f'()
)(2x
,解得x或x
52
因?yàn)閤
(
)
1
(1,
)
(
–
0
+0
–fx)
12
12
又(x)(
1所以f()在區(qū)間[,2
1上的取值范圍是[e2
].【考點(diǎn)】導(dǎo)數(shù)的應(yīng)用【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)兩大方面的應(yīng)用一函數(shù)單調(diào)性的討論:運(yùn)用導(dǎo)數(shù)知識討論函數(shù)單調(diào)性時首考慮函數(shù)的定義再出f'(,由()的負(fù),得出函數(shù)f()的調(diào)區(qū)間二)數(shù)的最極值的求法由單調(diào)區(qū)間合極值點(diǎn)的定義及自變量的取值范圍函數(shù)f()的值或最值.132(題滿分15分)如圖,已知拋物線x2y,點(diǎn)A()B(,)424過點(diǎn)B作直線AP的線,垂足為Q
,拋物線上的點(diǎn)(x)()
--
3--3(第題圖)(Ⅰ)求直線AP斜率的取值范圍;(Ⅱ)求PA||的大值.【答案】Ⅰ)((Ⅱ
試題解析:(Ⅰ)設(shè)直線的率為k,k
xx
,因?yàn)椋跃€A斜的取值范圍是(.2(Ⅱ)聯(lián)立直線P與的程yk29k42解得點(diǎn)的坐標(biāo)是x
.因?yàn)?-
1nn+1nn+≤n--1nn+1nn+≤n|PA
1
1(x)2
=1
k|=所以PAk3,令f)
1(x)
(k
,因?yàn)閒k)k2)(k
所以f()區(qū)間()上調(diào)增,
上單調(diào)遞減因此當(dāng)=
時,|取得最大值16【考點(diǎn)】直線與圓錐曲線的位置關(guān)系【名師點(diǎn)睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 經(jīng)典安全培訓(xùn)
- 智慧團(tuán)建培訓(xùn)
- 廣東省韶關(guān)市2023-2024學(xué)年三年級上學(xué)期期中英語試卷
- 廣東省江門市新會區(qū)大澤鎮(zhèn)沿江小學(xué)2024-2025學(xué)年一年級上學(xué)期期中語文中段綜合練習(xí)卷(無答案)
- 2024-2025學(xué)年山東省德州市德城區(qū)第十中學(xué)九年級上學(xué)期第一次月考物理試卷(含答案)
- 初二數(shù)學(xué)上學(xué)期期中考前測試卷(北師大版)含答案解析
- T-TSSP 038-2023 帶枝花椒機(jī)械化烘干及精.選生產(chǎn)技術(shù)規(guī)程
- T-ZFDSA 05-2024 丁香蜜米飲制作標(biāo)準(zhǔn)
- 搏擊基礎(chǔ)理論知識單選題100道及答案解析
- 家庭裝修樣板房
- 草原牧歌-鴻雁 課件 2024-2025學(xué)年人音版(簡譜)(2024)初中音樂七年級上冊
- 期中模擬試卷(1-4單元)(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 2024-2025學(xué)年人教版物理八年級上冊 期中考試物理試卷
- 期中測試卷(1-3單元)(試題)-2024-2025學(xué)年六年級上冊數(shù)學(xué)蘇教版
- 人教版八年級上冊生物期中考試試卷
- 汽車零部件采購供應(yīng)協(xié)議
- 緊急供貨服務(wù)合同案例
- 2024年江蘇省淮安市中考英語試題卷(含答案解析)
- 第一課蛋炒飯(課件)奧教版勞動四年級上冊
- 2024新一代變電站集中監(jiān)控系統(tǒng)系列規(guī)范第2部分:設(shè)計(jì)規(guī)范
- 2024年云南省中考真題試卷物理及答案
評論
0/150
提交評論