版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q2.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.3.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.4.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.5.的展開式中的系數(shù)是-10,則實數(shù)()A.2 B.1 C.-1 D.-26.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.27.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等8.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④9.若,則實數(shù)的大小關(guān)系為()A. B. C. D.10.設(shè)函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.311.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.12.已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為()A. B. C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.若點在直線上,則的值等于______________.14.數(shù)據(jù)的標準差為_____.15.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.16.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)已知函數(shù),其中.(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),求證:;(Ⅲ)若對于恒成立,求的最大值.19.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.20.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.21.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.22.(10分)已知,.(1)當時,證明:;(2)設(shè)直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。2、C【解析】
設(shè)過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設(shè)過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學計算能力,屬于中檔題.3、D【解析】
化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.4、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.5、C【解析】
利用通項公式找到的系數(shù),令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數(shù),考查學生的運算求解能力,是一道容易題.6、C【解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數(shù)的運算,考查了復數(shù)相等的涵義.對于復數(shù)的運算類問題,易錯點是把當成進行運算.7、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.9、A【解析】
將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大?。蝗粽鏀?shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.10、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個或三個(時有三個,時有兩個),所以關(guān)于的方程只能有一個根(若有兩個根,則關(guān)于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,屬于常考題型.11、B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.12、C【解析】
利用導數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設(shè)拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數(shù)的幾何意義的應(yīng)用,以及點到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.【點睛】本題考查誘導公式和同角的三角函數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.14、【解析】
先計算平均數(shù)再求解方差與標準差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎(chǔ)題.15、130.15.【解析】
由題意可得顧客需要支付的費用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學的應(yīng)用意識?數(shù)學式子變形與運算求解能力,以實際生活為背景,創(chuàng)設(shè)問題情境,考查學生身邊的數(shù)學,考查學生的數(shù)學建模素養(yǎng).16、【解析】
依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①2②期望值為X900600300100P【解析】
(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.18、(Ⅰ)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)利用二次求導可得,所以在上為增函數(shù),進而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)利用導數(shù)可得在區(qū)間上存在唯一零點,所以函數(shù)在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構(gòu)造函數(shù),利用導數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),,利用導數(shù)得其單調(diào)區(qū)間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數(shù),因為,所以當時,,為增函數(shù),當時,,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點,設(shè)零點為,則,且,當時,,當,,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數(shù),當時,,為減函數(shù),所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數(shù),當時,(a),(a)為減函數(shù),所以(a)的最大值為,則的最大值為.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,以及函數(shù)不等式恒成立問題的解法,意在考查學生等價轉(zhuǎn)化思想和數(shù)學運算能力,屬于較難題.19、(1)(2)【解析】
(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.20、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對函數(shù)求導后,利用導數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當時,.解得.當時,解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當時,由題意,當時,恒成立.,∴當時,恒成立,單調(diào)遞減.又,∴當時,恒成立,即.∴對于,恒成立.(3)因為.由(2)知,當時,恒成立,即對于,,不存在滿足條件的;當時,對于,,此時.∴,即恒成立,不存在滿足條件的;當時,令,可知與符號相同,當時,,,單調(diào)遞減.∴當時,,即恒成立.綜上,的取值范圍為.點睛:本題主要考查導數(shù)和單調(diào)區(qū)間,導數(shù)與不等式的證明,導數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導數(shù)問題的基本題型,也是基本功,先求定義域,然后求導,要注意通分和因式分解.二、三兩問一個是恒成立問題,一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 警械使用課件
- 2023年國家公務(wù)員考試《申論》真題(地市卷)及答案解析
- 9.2《永遇樂·京口北固亭懷古》-高一語文上學期同步備課拓展(統(tǒng)編版必修上冊)
- 西南林業(yè)大學《材料加工工藝與設(shè)備》2022-2023學年第一學期期末試卷
- 西京學院《微機原理與接口技術(shù)》2023-2024學年期末試卷
- 西京學院《漢語國際教育概論》2023-2024學年第一學期期末試卷
- 幼兒園小班打擊樂活動《小鱷魚之歌》課件
- 西華師范大學《中學思想政治學科教學論》2022-2023學年第一學期期末試卷
- 西華師范大學《舞臺劇創(chuàng)作》2023-2024學年第一學期期末試卷
- 房地產(chǎn)金融與投資概論教學課件第六章房地產(chǎn)開發(fā)建設(shè)融資
- 基于PLC的水箱溫度控制系統(tǒng)
- 第二課堂活動記錄表
- 消防救援-消防火場供水
- 植物嫁接實驗報告
- 學生營養(yǎng)餐滿意度調(diào)查表
- 上海高考語文知識點歸納完整版(精編版)
- 大班繪本閱讀《糊涂熊隊劃不快》
- 國開2023春《管理學基礎(chǔ)》專科形考作業(yè)一~四參考答案
- 《城市軌道交通應(yīng)急處理》項目三課件
- 機場航站樓及跑道擴建工程施工組織設(shè)計方案
- 高速公路綠化設(shè)計方案
評論
0/150
提交評論