版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山東省日照市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.集合M={a,b},N={a+1,3},a,b為實(shí)數(shù),若M∩N={2},則M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}
2.已知角α的終邊經(jīng)過點(diǎn)(-4,3),則cosα()A.4/5B.3/5C.-3/5D.-4/5
3.A=,是AB=的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
4.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是A.B.C.D.y=3x
5.橢圓9x2+16y2=144短軸長等于()A.3B.4C.6D.8
6.正方體棱長為3,面對角線長為()A.
B.2
C.3
D.4
7.下列函數(shù)中,在區(qū)間(0,)上是減函數(shù)的是()A.y=sinxB.y=cosxC.y=xD.y=lgx
8.設(shè)m>n>1且0<a<1,則下列不等式成立的是()A.
B.
C.
D.
9.函數(shù)y=log2x的圖象大致是()A.
B.
C.
D.
10.已知向量a=(2,4),b=(-1,1),則2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)
11.設(shè)a=1/2,b=5-1/2則()A.a>bB.a=bC.a<bD.不能確定
12.cos215°-sin215°=()A.
B.
C.
D.-1/2
13.為了得到函數(shù)y=sin1/3x的圖象,只需把函數(shù)y=sinx圖象上所有的點(diǎn)的()A.橫坐標(biāo)伸長到原來的3倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮小到原來的1/3倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮小到原來的1/3倍,橫坐標(biāo)不變
14.下列結(jié)論中,正確的是A.{0}是空集
B.C.D.
15.已知A是銳角,則2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角
16.己知向量a
=(2,1),b
=(-1,2),則a,b之間的位置關(guān)系為()A.平行B.不平行也不垂直C.垂直D.以上都不對
17.在等差數(shù)列中,若a3+a17=10,則S19等于()A.75B.85C.95D.65
18.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5
19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=2,S10=10,則a7的值為()A.0B.1C.2D.3
20.已知互為反函數(shù),則k和b的值分別是()A.2,
B.2,
C.-2,
D.-2,
二、填空題(10題)21.己知等比數(shù)列2,4,8,16,…,則2048是它的第()項(xiàng)。
22.
23.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.
24.
25.
26.某校有老師200名,男學(xué)生1200名,女學(xué)生1000名,現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為240的樣本,則從女生中抽取的人數(shù)為______.
27.
28.1+3+5+…+(2n-b)=_____.
29.若f(x-1)=x2-2x+3,則f(x)=
。
30.
三、計(jì)算題(5題)31.解不等式4<|1-3x|<7
32.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.
33.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
34.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
35.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
四、簡答題(10題)36.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值
37.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積
38.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值
39.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.
40.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長
41.解關(guān)于x的不等式
42.若α,β是二次方程的兩個實(shí)根,求當(dāng)m取什么值時,取最小值,并求出此最小值
43.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
44.已知函數(shù):,求x的取值范圍。
45.化簡
五、證明題(10題)46.
47.△ABC的三邊分別為a,b,c,為且,求證∠C=
48.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.
49.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
50.若x∈(0,1),求證:log3X3<log3X<X3.
51.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
52.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
53.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2
+(y+1)2
=8.
54.己知sin(θ+α)=sin(θ+β),求證:
55.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
六、綜合題(2題)56.己知點(diǎn)A(0,2),5(-2,-2).(1)求過A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
57.
參考答案
1.D集合的運(yùn)算.∵M(jìn)∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M(jìn)={a,b},∴b=2.AUB={1,2,3}.
2.D三角函數(shù)的定義.記P(-4,3),則x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5
3.AA是空集可以得到A交B為空集,但是反之不成立,因此時充分條件。
4.D
5.C
6.C面對角線的判斷.面對角線長為
7.B,故在(0,π/2)是減函數(shù)。
8.A同底時,當(dāng)?shù)讛?shù)大于0小于1時,減函數(shù);當(dāng)?shù)讛?shù)大于1時,增函數(shù),底數(shù)越大值越大。
9.C對數(shù)函數(shù)的圖象和基本性質(zhì).
10.A平面向量的線性計(jì)算.因?yàn)閍=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).
11.A數(shù)值的大小判斷
12.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
13.A三角函數(shù)圖像的性質(zhì).y=sinx橫坐標(biāo)伸長到原來的3倍,縱坐標(biāo)不變y=sin1/3x.
14.B
15.D
16.C
17.C
18.C同角三角函數(shù)的計(jì)算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.
19.A
20.B因?yàn)榉春瘮?shù)的圖像是關(guān)于y=x對稱,所以k=2.然后把一式中的x用y的代數(shù)式表達(dá),再把x,y互換,代入二式,得到m=-3/2.
21.第11項(xiàng)。由題可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
22.{-1,0,1,2}
23.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
24.-2/3
25.π/3
26.100分層抽樣方法.各層之比為200:1200:1000=1:6:5推出從女生中抽取的人數(shù)240×5/12=100.
27.4.5
28.n2,
29.
30.x+y+2=0
31.
32.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
44.
X>4
45.
46.
47.
48.
∴PD//平面ACE.
49.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
50.
51.
52.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024咨詢服務(wù)合同范本標(biāo)準(zhǔn)范文
- 廣東省珠海市七年級上學(xué)期語文期中試卷7套【附答案】
- 2024藥品代理合同范本
- 單位團(tuán)購房產(chǎn)轉(zhuǎn)讓合同范本
- 企業(yè)財產(chǎn)出售協(xié)議樣式
- 2024年農(nóng)村房屋轉(zhuǎn)讓協(xié)議范本
- 七年級地理上冊5.1《世界的人口》教案粵教版
- 2024版標(biāo)準(zhǔn)家庭裝修協(xié)議
- 建筑外墻保溫工程施工合同
- 個人借款合同協(xié)議書格式示例
- JC-T 2536-2019水泥-水玻璃灌漿材料
- 品牌授權(quán)協(xié)議書
- 藝術(shù)設(shè)計(jì)就業(yè)職業(yè)生涯規(guī)劃
- 《狙擊手》和《新神榜楊戩》電影賞析
- 槍庫應(yīng)急處置預(yù)案
- 老年患者術(shù)后譫妄的護(hù)理干預(yù)
- 《凸透鏡成像的規(guī)律》課件
- 倉庫管理中的客戶服務(wù)和溝通技巧
- 規(guī)劃選址及用地預(yù)審
- 土砂石料廠項(xiàng)目融資計(jì)劃書
- 2024年給藥錯誤護(hù)理不良事件分析持續(xù)改進(jìn)
評論
0/150
提交評論