版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年河北省保定市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)
2.A.一B.二C.三D.四
3.已知展開(kāi)式前三項(xiàng)的系數(shù)成等差數(shù)列,則n為()A.lB.8C.1或8D.都不是
4.A.-1B.-4C.4D.2
5.若函數(shù)y=log2(x+a)的反函數(shù)的圖像經(jīng)過(guò)點(diǎn)P(-1,0),則a的值為()A.-2
B.2
C.
D.
6.設(shè)一直線過(guò)點(diǎn)(2,3)且它在坐標(biāo)軸上的截距和為10,則直線方程為()A.
B.
C.
D.
7.不等式組的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
8.下表是某廠節(jié)能降耗技術(shù)改造后生產(chǎn)某產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù),用最小二乘法得到y(tǒng)關(guān)于x的線性回歸方程y^=0.7x+a,則a=()A.0.25B.0.35C.0.45D.0.55
9.已知A(1,1),B(-1,5)且,則C的坐標(biāo)為()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)
10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是()A.y=1/xB.y=ex
C.y=-x2+1D.y=lgx
11.已知集合M={1,2,3,4},以={-2,2},下列結(jié)論成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}
12.已知的值()A.
B.
C.
D.
13.A.10B.5C.2D.12
14.橢圓的焦點(diǎn)坐標(biāo)是()A.(,0)
B.(±7,0)
C.(0,±7)
D.(0,)
15.函數(shù)y=Asin(wx+α)的部分圖象如圖所示,則()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
16.6人站成一排,甲乙兩人之間必須有2人,不同的站法有()A.144種B.72種C.96種D.84種
17.A.1B.2C.3D.4
18.若f(x)=1/log1/2(2x+1),則f(x)的定義域?yàn)椋ǎ〢.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
19.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
20.A.2B.3C.4D.5
二、填空題(10題)21.
22.已知_____.
23.在:Rt△ABC中,已知C=90°,c=,b=,則B=_____.
24.
25.sin75°·sin375°=_____.
26.已知_____.
27.
28.
29.設(shè)x>0,則:y=3-2x-1/x的最大值等于______.
30.
三、計(jì)算題(10題)31.有語(yǔ)文書(shū)3本,數(shù)學(xué)書(shū)4本,英語(yǔ)書(shū)5本,書(shū)都各不相同,要把這些書(shū)隨機(jī)排在書(shū)架上.(1)求三種書(shū)各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書(shū)不挨著排的概率P。
32.近年來(lái),某市為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類(lèi),并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類(lèi)投放情況,現(xiàn)隨機(jī)抽取了該市四類(lèi)垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
33.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
34.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
35.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
36.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
37.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒(méi)有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
38.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
39.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
40.解不等式4<|1-3x|<7
四、簡(jiǎn)答題(10題)41.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。
42.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
43.化簡(jiǎn)
44.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值
45.簡(jiǎn)化
46.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
47.已知集合求x,y的值
48.某商場(chǎng)經(jīng)銷(xiāo)某種商品,顧客可采用一次性付款或分期付款購(gòu)買(mǎi),根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。
49.已知的值
50.求過(guò)點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長(zhǎng)為的直線方程。
五、解答題(10題)51.
52.已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.(1)求通項(xiàng)公式an;(2)設(shè)bn=2an求數(shù)列{bn}的前n項(xiàng)和Sn.
53.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,CC1的中點(diǎn).求證:(1)AC⊥BD1;(2)AE//平面BFD1.
54.
55.已知數(shù)列{an}是等差數(shù)列,且a2=3,a4+a5+a6=27(1)求通項(xiàng)公式an(2)若bn=a2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
56.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
57.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.
58.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A,B的任意一點(diǎn).(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.
59.已知數(shù)列{an}是首項(xiàng)和公差相等的等差數(shù)列,其前n項(xiàng)和為Sn,且S10=55.(1)求an和Sn(2)設(shè)=bn=1/Sn,數(shù)列{bn}的前n項(xiàng)和為T(mén)=n,求Tn的取值范圍.
60.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點(diǎn).(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1
六、單選題(0題)61.設(shè)l表示一條直線,α,β,γ表示三個(gè)不同的平面,下列命題正確的是()A.若l//α,α//β,則l//β
B.若l//α,l//β,則α//β
C.若α//β,β//γ,則α//γ
D.若α//β,β//γ,則α//γ
參考答案
1.D
2.A
3.B由題可知,,即n2-9n+8=0,解得n=8,n=-1(舍去)。
4.C
5.D
6.D
7.C由不等式組可得,所以或,由①可得,求得;由②可得,求得,綜上可得。
8.B線性回歸方程的計(jì)算.由題可以得出
9.A
10.C函數(shù)的奇偶性,單調(diào)性.根據(jù)題意逐-驗(yàn)證,可知y=-x2+1是偶函數(shù)且在(0,+∞)上為減函數(shù).
11.D集合的包含關(guān)系的判斷.兩個(gè)集合只有一個(gè)公共元素2,所以M∩N={2}
12.A
13.A
14.D
15.A三角函數(shù)圖像的性質(zhì).由題圖可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五點(diǎn)作圖法可知2×π/3+α=π/2,所以α=-π/6所以函數(shù)的解析式為y=2sin(2x-π/6)
16.A6人站成一排,甲乙兩人之間必須有2人,可以先從其余4人中選出2人,安排在甲乙兩人之間,在與其余兩人進(jìn)行排列,所以不同站法共有種。
17.C
18.C函數(shù)的定義域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).
19.D一元二次不等式方程的計(jì)算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
20.D向量的運(yùn)算.因?yàn)樗倪呅蜛BCD是平行四邊形,
21.
22.
23.45°,由題可知,因此B=45°。
24.-2/3
25.
,
26.-1,
27.75
28.2
29.
基本不等式的應(yīng)用.
30.(1,2)
31.
32.
33.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
34.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
35.
36.
37.
38.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
39.
40.
41.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
42.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
43.sinα
44.
45.
46.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
47.
48.
49.
∴∴則
50.x-7y+19=0或7x+y-17=0
51.
52.(1)由題意知
53.(1)連接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因?yàn)锽D1包含于平面BDD1→AC⊥BD1.(2)連接EF,因?yàn)镋,F(xiàn)分別為DD1,CC1的中點(diǎn),所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四邊形EFBA是平行四邊形,所以AE//BF,又因?yàn)锳E不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1
54.
55.
56.
57.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)證明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.
58.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB為⊙O的直徑,C為⊙O上異于A、B的-點(diǎn),AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC為直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
59.(1)設(shè)數(shù)列{an}的公差為d則a1=d,an=a1+(n-l)d=nd,由Sn=a1+a2+...+a10=5
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)代理產(chǎn)品合同范例
- 建筑企業(yè)噴漆合同范例
- 廣告制作行業(yè)合同范例
- 工廠招學(xué)徒合同范例
- 商鋪防水專(zhuān)業(yè)合同范例
- 德云社師徒協(xié)議合同范例
- 小區(qū)綠化預(yù)算合同范例
- 座談會(huì)演講稿格式
- 庫(kù)存鞋購(gòu)銷(xiāo)合同范例
- 獸醫(yī)用工合同范例
- 中小學(xué)教師資格考試成績(jī)復(fù)核申請(qǐng)表
- 五年級(jí)上冊(cè)英語(yǔ)課件M6U1 You can play football well
- 心肌疾病-第九版內(nèi)科學(xué)課件
- 工作人員應(yīng)對(duì)火災(zāi)現(xiàn)場(chǎng)應(yīng)急處置卡
- 部門(mén)綜合評(píng)價(jià)表
- 電動(dòng)剪刀式升降車(chē)安全培訓(xùn)課件
- 盆底超聲檢查課件
- 中醫(yī)治療疫病的優(yōu)勢(shì)與前景共31張課件
- 考研復(fù)習(xí)有機(jī)化學(xué)選擇題400題(頁(yè)尾附答案)
- 初中語(yǔ)文-科幻小說(shuō)閱讀指導(dǎo)-課件(共30張)
- 灌注樁樁頭破除綜合施工專(zhuān)題方案付
評(píng)論
0/150
提交評(píng)論