2022年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年安徽省淮南市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.A.-(1/2)B.1/2C.-1D.2

2.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

3.

4.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件

5.

6.

7.A.3B.2C.1D.1/2

8.

A.x=-2B.x=2C.y=1D.y=-2

9.

10.

11.

12.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C

13.

14.

A.

B.

C.

D.

15.

A.

B.1

C.2

D.+∞

16.

17.

18.

19.

20.

二、填空題(20題)21.22.

=_________.

23.

24.

25.

26.27.

28.

29.

30.

31.設(shè)f'(1)=2.則

32.

33.

34.已知平面π:2x+y一3z+2=0,則過(guò)原點(diǎn)且與π垂直的直線(xiàn)方程為_(kāi)_______.

35.函數(shù)f(x)=xe-x的極大值點(diǎn)x=__________。

36.37.

38.

39.微分方程y''+y=0的通解是______.40.∫(x2-1)dx=________。三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.42.43.證明:44.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).48.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則51.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.

54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

55.

56.求微分方程的通解.

57.

58.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

59.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).60.四、解答題(10題)61.設(shè)y=x+arctanx,求y'.

62.

63.求微分方程y"-y'-2y=3ex的通解.

64.

65.

66.設(shè)z=z(x,y)由方程z3y-xz-1=0確定,求出。

67.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。68.69.求微分方程y"-y'-2y=0的通解。

70.五、高等數(shù)學(xué)(0題)71.

=()。

A.∞

B.0

C.

D.

六、解答題(0題)72.

參考答案

1.A

2.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

3.B

4.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。

5.D

6.A

7.B,可知應(yīng)選B。

8.C解析:

9.C

10.D

11.D

12.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

13.D

14.D

故選D.

15.C

16.D

17.D

18.C

19.A

20.D

21.

22.。

23.(03)(0,3)解析:

24.e-6

25.26.0

27.

28.(-∞2)

29.

30.0

31.11解析:本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f'(1)=2,可知

32.

33.1/6

34.

本題考查的知識(shí)點(diǎn)為直線(xiàn)方程和直線(xiàn)與平面的關(guān)系.

由于平面π與直線(xiàn)1垂直,則直線(xiàn)的方向向量s必定平行于平面的法向量n,因此可以取

35.1

36.37.0.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.

38.2/339.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.

40.

41.

42.

43.

44.

45.函數(shù)的定義域?yàn)?/p>

注意

46.

47.

列表:

說(shuō)明

48.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

49.

50.由等價(jià)無(wú)窮小量的定義可知

51.

52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

53.由一階線(xiàn)性微分方程通解公式有

54.由二重積分物理意義知

55.

56.

57.

58.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

59.

60.

61.

62.63.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=Aex.代入原方程可得

原方程的通解為

本題考查的知識(shí)點(diǎn)為求解二階線(xiàn)性常系數(shù)非齊次微分方程.

由二階線(xiàn)性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的一個(gè)特解y*.

其中Y可以通過(guò)求解特征方程得特征根而求出.而yq*可以利用待定系數(shù)法求解.

64.

65.

66.

67.

于是由實(shí)際問(wèn)題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。于是由實(shí)際問(wèn)題得,S

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論