版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年湖北省隨州市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
2.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
3.
4.
5.
6.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計算時,用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)
7.
8.
9.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點
10.
11.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
12.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)
13.
14.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
15.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域為()。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]16.A.A.1
B.3
C.
D.0
17.若xo為f(x)的極值點,則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
18.
19.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
20.
二、填空題(20題)21.
22.
23.求微分方程y"-y'-2y=0的通解。
24.
25.
26.
27.微分方程y"+y=0的通解為______.28.交換二重積分次序=______.
29.
30.設(shè)y=,則y=________。31.過點Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.
32.
33.ylnxdx+xlnydy=0的通解是______.
34.
35.
36.
37.
38.
39.
40.
三、計算題(20題)41.42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.43.
44.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
47.
48.證明:
49.求微分方程y"-4y'+4y=e-2x的通解.
50.求曲線在點(1,3)處的切線方程.51.
52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.53.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則54.55.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
56.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.57.將f(x)=e-2X展開為x的冪級數(shù).
58.
59.60.求微分方程的通解.四、解答題(10題)61.
62.
63.64.設(shè)65.66.求fe-2xdx。
67.
68.設(shè)z=z(x,y)由方程e2-xy+y+z=0確定,求dz.69.70.五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
2.B
3.D
4.C
5.B
6.D
7.C
8.D
9.A
10.A
11.C
12.C本題考查的知識點為可變上限積分的求導(dǎo)性質(zhì).
這是一個基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見的錯誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯誤.
13.B
14.A
15.B∵一1≤x一1≤1∴0≤x≤2。
16.B本題考查的知識點為重要極限公式.可知應(yīng)選B.
17.C
18.D解析:
19.B本題考查的知識點為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯誤是選C.如果畫個草圖,則可以避免這類錯誤.
20.C
21.
22.1
23.
24.0
25.
解析:
26.27.y=C1cosx+C2sinx本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.
28.本題考查的知識點為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
29.2
30.31.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點Mo(1,-1,0),由平面的點法式方程可知,所求平面為
32.
33.(lnx)2+(lny)2=C
34.(-33)(-3,3)解析:
35.ee解析:
36.
解析:
37.
38.
39.x2+y2=Cx2+y2=C解析:
40.(-∞.2)
41.
42.
列表:
說明
43.
則
44.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%45.函數(shù)的定義域為
注意
46.
47.
48.
49.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
50.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.由一階線性微分方程通解公式有
52.由二重積分物理意義知
53.由等價無窮小量的定義可知
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.65.用極坐標(biāo)解(積分區(qū)域和被積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)題庫綜合試卷B卷附答案
- 2024年圖書館管理服務(wù)項目資金申請報告代可行性研究報告
- 五年級數(shù)學(xué)(小數(shù)乘除法)計算題專項練習(xí)及答案
- 文化自信背景下民族傳統(tǒng)體育文化的傳承與發(fā)展
- 魯教版高三上學(xué)期期末地理試題及解答參考
- 2024年定制出口業(yè)務(wù)銷售協(xié)議模板
- 保安公司門衛(wèi)服務(wù)承攬協(xié)議范本
- 2024高品質(zhì)彩鋼房建設(shè)協(xié)議書
- 2024批次高品質(zhì)片石購買協(xié)議
- 2024年健身機構(gòu)業(yè)務(wù)合作伙伴協(xié)議
- 2023-2024學(xué)年北京海淀區(qū)首都師大附中初二(上)期中道法試題及答案
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導(dǎo)則
- 二級公立醫(yī)院績效考核三級手術(shù)目錄(2020版)
- 新蘇教版六年級上冊《科學(xué)》全一冊全部課件(含19課時)
- 親子閱讀ppt課件
- 愛心媽媽結(jié)對幫扶記錄表
- 農(nóng)貿(mào)市場建設(shè)項目裝飾工程施工方案
- 八年級語文上冊期中文言文默寫(含答案)
- MATLAB語言課程論文 基于MATLAB的電磁場數(shù)值圖像分析
- 暗挖隧道帷幕注漿專項方案[優(yōu)秀工程方案]
- 淺談城市燃氣管網(wǎng)安全運行存在問題及處理對策
評論
0/150
提交評論