2022年四川省資陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022年四川省資陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022年四川省資陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022年四川省資陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022年四川省資陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年四川省資陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

2.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C

3.設(shè)y=exsinx,則y'''=A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

4.

5.微分方程(y)2+(y)3+sinx=0的階數(shù)為

A.1B.2C.3D.4

6.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合

7.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.低階無窮小

8.

9.

A.

B.

C.

D.

10.

()A.x2

B.2x2

C.xD.2x

11.

12.

13.

14.

等于().

15.績(jī)效評(píng)估的第一個(gè)步驟是()

A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見

16.

17.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)

B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0

C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)

D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)

18.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。

A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡

19.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

20.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則

29.

30.

31.

32.

33.微分方程y"-y'=0的通解為______.

34.函數(shù)x=ln(1+x2-y2)的全微分dz=_________.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

43.求微分方程的通解.

44.

45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

46.

47.求曲線在點(diǎn)(1,3)處的切線方程.

48.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

49.證明:

50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

51.將f(x)=e-2X展開為x的冪級(jí)數(shù).

52.

53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

55.求微分方程y"-4y'+4y=e-2x的通解.

56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

57.

58.

59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

60.

四、解答題(10題)61.

62.

63.

64.

65.

66.(本題滿分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’

67.

68.將f(x)=sin3x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。

69.

又可導(dǎo).

70.

五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.求曲線在點(diǎn)(1,3)處的切線方程.

參考答案

1.C

2.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

3.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

4.B

5.B

6.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0??芍獌善矫娲怪?,因此選A。

7.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無窮小,因此選A。

8.A

9.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.

因此選D.

10.A

11.D

12.D

13.D

14.D解析:本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法.

因此選D.

15.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見;(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。

16.D解析:

17.B

18.C

19.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

20.B

21.

22.

23.x(asinx+bcosx)

24.[-11]

25.

26.e-1/2

27.

28.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此

29.

30.0

31.11解析:

32.

33.y=C1+C2exy=C1+C2ex

解析:本題考查的知識(shí)點(diǎn)為二階級(jí)常系數(shù)線性微分方程的求解.

特征方程為r2-r=0,

特征根為r1=0,r2=1,

方程的通解為y=C1+C2ex.

34.

35.-exsiny

36.

37.y=-e-x+C

38.1本題考查了無窮積分的知識(shí)點(diǎn)。

39.y=f(0)

40.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

41.由一階線性微分方程通解公式有

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.

45.

列表:

說明

46.

47.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

48.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

49.

50.

51.

52.

53.

54.由等價(jià)無窮小量的定義可知

55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

56.由二重積分物理意義知

57.

58.

59.

60.

61.積分區(qū)域D如下圖所示:

被積函數(shù)f(x,y)=y/x,化為二次積分時(shí)對(duì)哪個(gè)變量皆易于積分;但是區(qū)域D易于用X—型不等式表示,因此選擇先對(duì)y積分,后對(duì)x積分的二次積分次序.

62.

63.

64.

65.

66.本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.

解法1將所給方程兩端關(guān)于x求導(dǎo),可得

解法2

y=y(tǒng)(x)由方程F(x,y)=0確定,求y通常有兩種方法:

-是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y的方程,從中解出y.

對(duì)于-些特殊情形,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論