2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

2.

3.微分方程(y)2+(y)3+sinx=0的階數(shù)為

A.1B.2C.3D.4

4.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

5.

6.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

7.

8.()。A.2πB.πC.π/2D.π/4

9.函數(shù)z=x2-xy+y2+9x-6y+20有

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-110.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

11.

A.

B.

C.

D.

12.

13.A.A.

B.

C.

D.

14.

15.

16.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

17.若x→x0時(shí),α(x)、β(x)都是無窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型18.()A.A.

B.

C.

D.

19.設(shè)二元函數(shù)z==()A.1

B.2

C.x2+y2D.20.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx二、填空題(20題)21.

22.

23.

24.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.25.設(shè)f(0)=0,f'(0)存在,則

26.

27.

28.

29.30.設(shè)y=1nx,則y'=__________.

31.

32.

33.34.若f'(x0)=1,f(x0)=0,則

35.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為__________。

36.37.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。38.39.40.三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.43.證明:

44.

45.

46.求微分方程的通解.47.48.將f(x)=e-2X展開為x的冪級數(shù).49.

50.

51.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

54.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.

58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.

62.

63.64.65.

66.

67.設(shè)y=ln(1+x2),求dy。68.69.70.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.五、高等數(shù)學(xué)(0題)71.

收斂的()條件。

A.充分B.必要C.充分且必要D.無關(guān)六、解答題(0題)72.

參考答案

1.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

2.D

3.B

4.C

5.A

6.B本題考查的知識點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

7.B

8.B

9.D本題考查了函數(shù)的極值的知識點(diǎn)。

10.B本題考查的知識點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

11.D本題考查的知識點(diǎn)為導(dǎo)數(shù)運(yùn)算.

因此選D.

12.B

13.A

14.C解析:

15.C

16.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

17.D

18.A

19.A

20.C本題考查的知識點(diǎn)為高階偏導(dǎo)數(shù).

由于z=ysinx,因此

可知應(yīng)選C.

21.3yx3y-13yx3y-1

解析:22.5.

本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

解法1

解法2

23.

解析:

24.本題考查的知識點(diǎn)為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.25.f'(0)本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.

由于f(0)=0,f'(0)存在,因此

本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:

因?yàn)轭}設(shè)中只給出f'(0)存在,并沒有給出,f'(z)(x≠0)存在,也沒有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.

26.3x2siny3x2siny解析:27.f(0).

本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.

由于f(0)=0,f(0)存在,因此

本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:

因?yàn)轭}設(shè)中只給出f(0)存在,并沒有給出f(x)(x≠0)存在,也沒有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.

28.2/32/3解析:

29.

30.

31.(-22)

32.

解析:

33.034.-1

35.

36.37.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

38.本題考查的知識點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

39.本題考查的知識點(diǎn)為定積分的基本公式。

40.

本題考查的知識點(diǎn)為二重積分的性質(zhì).

41.由等價(jià)無窮小量的定義可知42.由二重積分物理意義知

43.

44.45.由一階線性微分方程通解公式有

46.

47.

48.

49.

50.

51.

52.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

53.

54.

55.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

56.

列表:

說明

57.

58.函數(shù)的定義域?yàn)?/p>

注意

59.

60.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

61.

62.

63.

64.

65.

66.解如圖所示,把積分區(qū)域D作為y一型區(qū)域,即

67.

68.69.本題考查的知識點(diǎn)為:描述函數(shù)幾何性態(tài)的綜合問題。

極小值點(diǎn)為x=一1,極小值為曲線的凹區(qū)間為(一2,+∞);曲線的凸區(qū)間為(一∞,一2);70.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)的切線方程為y-a2=2a(x-a),即y=2ax-a2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論