2022年湖北省武漢市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022年湖北省武漢市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022年湖北省武漢市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022年湖北省武漢市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022年湖北省武漢市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖北省武漢市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

3.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過程。

A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商

4.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

5.A.(1/3)x3

B.x2

C.2xD.(1/2)x

6.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。

A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡

7.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)

8.

9.

10.A.A.1B.2C.3D.4

11.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。

A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位

B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景

C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位

D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力

12.若,則下列命題中正確的有()。A.

B.

C.

D.

13.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

14.

15.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)16.A.0B.2C.2f(-1)D.2f(1)

17.

18.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

19.

20.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面二、填空題(20題)21.微分方程y'=0的通解為__________。

22.設(shè)函數(shù)y=x2lnx,則y=__________.

23.

24.廣義積分.

25.

26.27.

28.

29.

30.31.過坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為______.

32.

33.

34.

35.36.

37.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.

38.

39.

40.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。

三、計(jì)算題(20題)41.證明:42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

45.

46.

47.

48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).50.

51.求曲線在點(diǎn)(1,3)處的切線方程.52.

53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

54.求微分方程的通解.

55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

56.將f(x)=e-2X展開為x的冪級(jí)數(shù).57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

60.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)61.計(jì)算62.設(shè)y=x+arctanx,求y'.63.求微分方程xy'-y=x2的通解.

64.

65.

66.證明:ex>1+x(x>0).

67.

68.設(shè)z=x2y+2y2,求dz。69.

70.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。

五、高等數(shù)學(xué)(0題)71.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

六、解答題(0題)72.求

參考答案

1.B

2.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

3.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過程。

4.C

5.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

Y=x2+1,(dy)/(dx)=2x

6.C

7.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

8.A

9.D

10.D

11.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。

12.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

13.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

14.C

15.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.

16.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

17.C

18.C

19.A

20.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。

21.y=C

22.

23.[01)∪(1+∞)24.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

25.3x+y-5z+1=03x+y-5z+1=0解析:

26.27.

28.

29.[*]30.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通常可以先變形:

31.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.

32.

解析:本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

33.ln|1-cosx|+Cln|1-cosx|+C解析:

34.

解析:

35.4π本題考查了二重積分的知識(shí)點(diǎn)。

36.本題考查了交換積分次序的知識(shí)點(diǎn)。

37.

38.

39.π/4

40.-1

41.

42.

43.

44.

45.

46.

47.

48.由二重積分物理意義知

49.

列表:

說明

50.由一階線性微分方程通解公式有

51.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

52.

53.

54.

55.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

56.57.函數(shù)的定義域?yàn)?/p>

注意

58.

59.由等價(jià)無窮小量的定義可知

60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

61.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.

比較典型的錯(cuò)誤是利用換元計(jì)算時(shí),一些考生忘記將積分限也隨之變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論