2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁
2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁
2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁
2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁
2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

2.等于().A.A.0

B.

C.

D.∞

3.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

4.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π

5.

6.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex

B.ex

C.-e-xQ258

D.e-x

7.

8.A.3B.2C.1D.1/29.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合10.A.A.4/3B.1C.2/3D.1/311.A.3B.2C.1D.0

12.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于

A.eB.1C.1+e2

D.ln213.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

14.A.0B.2C.2f(-1)D.2f(1)

15.

16.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

17.

18.A.

B.0

C.ln2

D.-ln2

19.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

20.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.∫e-3xdx=__________。

33.

34.

35.

36.曲線y=x3-3x+2的拐點(diǎn)是__________。

37.

38.

39.

40.

三、計(jì)算題(20題)41.將f(x)=e-2X展開為x的冪級(jí)數(shù).

42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

43.證明:

44.

45.求微分方程的通解.

46.

47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

49.

50.

51.

52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

53.求微分方程y"-4y'+4y=e-2x的通解.

54.

55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

57.

58.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

59.求曲線在點(diǎn)(1,3)處的切線方程.

60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

四、解答題(10題)61.計(jì)算,其中區(qū)域D滿足x2+y2≤1,x≥0,y≥0.

62.

63.

64.

65.

66.

67.

68.求微分方程y+y-2y=0的通解.

69.

70.

五、高等數(shù)學(xué)(0題)71.zdy一ydz=0的通解_______。

六、解答題(0題)72.

參考答案

1.B

2.A

3.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

4.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

5.A解析:

6.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

7.B

8.B,可知應(yīng)選B。

9.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;

當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。

10.C

11.A

12.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).

因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.

13.D

14.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

15.A

16.A

17.B

18.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此

故選A.

19.B

20.D

21.2.

本題考查的知識(shí)點(diǎn)為二次積分的計(jì)算.

由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知

22.2

23.ln2

24.e-1/2

25.0

26.1/21/2解析:

27.F(sinx)+C

28.極大值為8極大值為8

29.-ln|x-1|+C

30.1-m

31.[-11)

32.-(1/3)e-3x+C

33.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。

34.(00)

35.

36.(02)

37.x2x+3x+C本題考查了不定積分的知識(shí)點(diǎn)。

38.-2y

39.

40.

41.

42.由二重積分物理意義知

43.

44.

45.

46.

47.

48.由等價(jià)無窮小量的定義可知

49.

50.

51.由一階線性微分方程通解公式有

52.函數(shù)的定義域?yàn)?/p>

注意

53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

54.

55.

56.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

57.

58.

59.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

60.

列表:

說明

61.積分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論