2022-2023學(xué)年河北省石家莊市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁
2022-2023學(xué)年河北省石家莊市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁
2022-2023學(xué)年河北省石家莊市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁
2022-2023學(xué)年河北省石家莊市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁
2022-2023學(xué)年河北省石家莊市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河北省石家莊市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex

B.y*=Axex

C.y*=2ex

D.y*=ex

2.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

3.

4.

5.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是

A.xo為f(x)的極大值點(diǎn)

B.xo為f(x)的極小值點(diǎn)

C.xo不為f(x)的極值點(diǎn)

D.xo可能不為f(x)的極值點(diǎn)

6.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C

7.

8.

9.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

10.

11.

12.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()

A.力系平衡

B.力系有合力

C.力系的合力偶矩等于平行四邊形ABCD的面積

D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍

13.

14.A.A.

B.

C.

D.

15.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

16.A.A.>0B.<0C.=0D.不存在17.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

18.

19.下列關(guān)系式中正確的有()。A.

B.

C.

D.

20.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().

A.2sinxB.2cosxC.-2sinxD.-2cosx二、填空題(20題)21.設(shè)函數(shù)x=3x+y2,則dz=___________

22.

23.函數(shù)的間斷點(diǎn)為______.24.25.26.27.

28.

29.設(shè)y=1nx,則y'=__________.

30.

31.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。

32.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

33.

34.過原點(diǎn)且與直線垂直的平面方程為______.35.

36.

37.

38.過點(diǎn)M0(2,0,-1)且平行于的直線方程為______.

39.

40.

三、計(jì)算題(20題)41.證明:42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.44.

45.求微分方程y"-4y'+4y=e-2x的通解.

46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

48.49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).50.

51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.將f(x)=e-2X展開為x的冪級(jí)數(shù).53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

55.求曲線在點(diǎn)(1,3)處的切線方程.

56.

57.

58.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.59.求微分方程的通解.60.四、解答題(10題)61.62.

63.64.設(shè)函數(shù)y=xlnx,求y''.

65.

66.

67.

68.

69.求由曲線y=1-x2在點(diǎn)(1/2,3/4]處的切線與該曲線及x軸所圍圖形的面積A。

70.

五、高等數(shù)學(xué)(0題)71.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。

A.斜交B.垂直C.平行D.重合六、解答題(0題)72.

參考答案

1.A由方程知,其特征方程為,r2-2=0,有兩個(gè)特征根r=±.又自由項(xiàng)f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.

2.B

3.D

4.D

5.A

6.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

7.A

8.C解析:

9.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

10.A

11.B解析:

12.D

13.A

14.B

15.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組

故選A.

16.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。

17.B

18.C解析:

19.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此

可知應(yīng)選B。

20.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f(x)=2(sinx)≈2cosx.

可知應(yīng)選B.

21.

22.

解析:23.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

僅當(dāng),即x=±1時(shí),函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點(diǎn)。

24.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).

25.26.1

27.

28.2/52/5解析:

29.

30.

31.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。

32.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

33.

解析:34.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

35.

36.(sinx+cosx)exdx(sinx+cosx)exdx解析:

37.y

38.

39.

40.

41.

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.

45.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

46.由等價(jià)無窮小量的定義可知

47.

48.

49.

列表:

說明

50.由一階線性微分方程通解公式有

51.

52.

53.

54.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%55.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

56.

57.

58.由二重積分物理意義知

59.

60.

61.【解析】本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù)與全微分.

解法1

解法2利用微分運(yùn)算

【解題指導(dǎo)】

求二元隱函數(shù)的偏導(dǎo)數(shù)有兩種方法:

62.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

解法1將方程兩端關(guān)于x求導(dǎo),可得

解法2將方程兩端求微分

【解題指導(dǎo)】

若y=y(tǒng)(x)由方程F(x,y)=0確定,求dy常常有兩種方法.

(1)將方程F(x,y)=0直接求微分,然后解出dy.

(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論