




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年安徽省銅陵市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.A.1-cosxB.1+cosxC.2-cosxD.2+cosx4.A.A.
B.
C.
D.
5.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
6.
7.A.A.
B.
C.
D.
8.
9.
10.
11.
12.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
13.
14.等于().A.A.0
B.
C.
D.∞
15.
A.2B.1C.1/2D.0
16.
17.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
18.
19.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
20.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
二、填空題(20題)21.設(shè),則y'=________。22.過(guò)點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為_(kāi)_____.23.
24.25.26.
27.
28.
29.設(shè),將此積分化為極坐標(biāo)系下的積分,此時(shí)I=______.
30.31.
32.
33.
34.
35.
36.過(guò)點(diǎn)M0(2,0,-1)且平行于的直線方程為_(kāi)_____.
37.38.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.
39.
40.
三、計(jì)算題(20題)41.
42.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.44.
45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
46.
47.48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.
50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).52.求微分方程的通解.53.求曲線在點(diǎn)(1,3)處的切線方程.54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則58.
59.求微分方程y"-4y'+4y=e-2x的通解.
60.證明:四、解答題(10題)61.62.
63.
64.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)z=exy,則dz|(1,1)(1.1)=___________。
六、解答題(0題)72.將展開(kāi)為x的冪級(jí)數(shù).
參考答案
1.A
2.A
3.D
4.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
因此選C.
5.C
6.A
7.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
8.D
9.A
10.B
11.A解析:
12.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
13.C
14.A
15.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小量的性質(zhì).
16.B解析:
17.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
18.C
19.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見(jiàn)的錯(cuò)誤是選C.如果畫(huà)個(gè)草圖,則可以避免這類錯(cuò)誤.
20.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
21.22.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.
所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.
23.1本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn)。
24.x=-1
25.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
26.x2x+3x+C本題考查了不定積分的知識(shí)點(diǎn)。
27.7
28.
29.
30.本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)
31.
32.2
33.0
34.1/π
35.
36.
37.
38.(-∞,+∞)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
39.
40.
41.
42.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%43.函數(shù)的定義域?yàn)?/p>
注意
44.
則
45.
46.
47.
48.
49.50.由二重積分物理意義知
51.
52.53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
55.
56.
列表:
說(shuō)明
57.由等價(jià)無(wú)窮小量的定義可知58.由一階線性微分方程通解公式有
59.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
60.
61.
62.
63.
64.
65.
66.本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.
所給平面圖形如圖4—1中陰影部分所示,
注這是常見(jiàn)的考試題型,考生應(yīng)該熟練掌握.
67.
68.
69.
70.
71.z=exyzx"=yexy;z"|(11)=ezy"=xexy|(11)=e∴dz|(11)=edx+edyz=exy,zx
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水上運(yùn)動(dòng)設(shè)施建設(shè)投資合同
- 建設(shè)工程施工承包墊資合同
- 信息咨詢服務(wù)合同書(shū)
- 電子商務(wù)法電子合同法
- 四川外國(guó)語(yǔ)大學(xué)《化工設(shè)備設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東東軟學(xué)院《射頻集成電路分析與設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 邢臺(tái)學(xué)院《鋼琴5》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆建設(shè)職業(yè)技術(shù)學(xué)院《水利水電工程概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 青海師范大學(xué)《數(shù)字高程模型》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西航空職業(yè)技術(shù)學(xué)院《美術(shù)三》2023-2024學(xué)年第二學(xué)期期末試卷
- 英語(yǔ)常用動(dòng)詞表500個(gè)
- 《稅法》(第六版)全書(shū)教案電子講義
- 2024年電工(高級(jí)技師)職業(yè)鑒定理論考試題庫(kù)-下(多選、判斷題)
- 20S515 鋼筋混凝土及磚砌排水檢查井
- 《幼兒園保教質(zhì)量評(píng)估指南》解讀
- ICU單間耗材出入庫(kù)使用登記表
- 外研版(一年級(jí)起點(diǎn))四年級(jí)下冊(cè)英語(yǔ)全冊(cè)教學(xué)課件
- 助貸機(jī)構(gòu)業(yè)務(wù)流程規(guī)范
- 2024四川省涼山州林業(yè)局招聘60人歷年(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- DL∕T 5106-2017 跨越電力線路架線施工規(guī)程
- 西師大版數(shù)學(xué)四年級(jí)下冊(cè)全冊(cè)教學(xué)課件(2024年3月修訂)
評(píng)論
0/150
提交評(píng)論