復(fù)變函數(shù)與積分變換A卷(月)_第1頁
復(fù)變函數(shù)與積分變換A卷(月)_第2頁
復(fù)變函數(shù)與積分變換A卷(月)_第3頁
復(fù)變函數(shù)與積分變換A卷(月)_第4頁
復(fù)變函數(shù)與積分變換A卷(月)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

n.nn.n年~年二學(xué)課程名稱:復(fù)函數(shù)與分變換考生學(xué)號(hào):試卷類型:A卷√卷□

專業(yè)年級(jí):考生姓名:考試方式開□閉卷√………………一、單選題每題3分共15分).若

z

11

,則

z

的值等于

()A.

i

B

C

D.

fz),則.若上可導(dǎo)A.僅在直線

f

滿足

B.在直線

上導(dǎo)

()C.僅在

點(diǎn)解析

D僅在

點(diǎn)可導(dǎo).函數(shù)

f(z)

z(

z

處的泰勒展開式的收斂圓域?yàn)?/p>

()A.

|z2

B

|z

C.

|z

D.

|.z是數(shù)f(z)

1z(

()A.可去奇點(diǎn)

B.階極點(diǎn)

C.二階極點(diǎn)

D.階極點(diǎn).設(shè)

f(t)

是一個(gè)無窮次可微函數(shù),

t)

為單位脈沖函數(shù),那么

(t)f(tt

()A.

f(t)

B

(0)

C.

f

D

f(0)

(0)二、填題每題分,21分)當(dāng)為的倍數(shù)時(shí),復(fù)數(shù)1ii

n

的值為..設(shè)

f(0)f

,limz0

f(z)z

./

ii.設(shè)為正向圓周

|

,則

C

z

____________..冪級(jí)數(shù)

)nz

的收斂半徑為_.1.?dāng)?shù)

在其孤立奇點(diǎn)z處的留數(shù)為____________.設(shè)

f(t)

的傅里葉變換是

)

,則函數(shù)

f(t

的傅里葉變換是___

..

()

s

2

1

,則

L

)

.三、計(jì)題每題分,16分).復(fù)數(shù)

,求

的實(shí)部、虛部、模、輻角主值以及

z

的..用留數(shù)計(jì)算反常積分

-

ix

2

dx

.四、求列分每題8分共16分).C為向周

z

,計(jì)算積分

C

e(z2)

dz

./

.算積分

I

C

1zsinz

,其中C為向圓周.五、解題每題分,16分).知調(diào)和函數(shù)

y

y

,求解析函數(shù)

f

..函數(shù)

f(z)

z(2)

分別在圓環(huán)域

z和z

內(nèi)開洛級(jí)./

六、解題每題分,16分).知函數(shù)

f(t)

的換為

)

,求函數(shù)

()()

的Fourier換..用變求解積分方程

f(t)at

t

sin(t

)

)d

./

ii年~2014年二學(xué)期復(fù)變函數(shù)與積分變換A參考答案一、單選題每題3分共15分)..D.B4C5二、填題每題分,21分)..

..

22

10.111.

)

12

2三、計(jì)題每題分,16分).解

z)Im(z)

,······················

(分z

,

z

2

,

2

)i

(分)解

ix

2

dx

i[i]2

································(4)

i()i

z

e

····························································

(分四、求列分每題8分共16分)

導(dǎo)

數(shù)

C

ez(z2)

dz

=

2!

lim(z)z2

···············································

(6分)=

lime

z

······················································································

(分z2解正向圓周z內(nèi)函數(shù)z)

1zsinz

有唯一的奇點(diǎn)且階極點(diǎn)·····(分)因此s[f(),0]z0

2

1zsin

z0

sincoszsinzsinzz

)故

I

C

1zsin

s[(z),0]

·········

(分五、解題每題分,16分)解方法

x2y

,

2

①,

②··········(分由①式

xdy

()

,兩邊對(duì)

求導(dǎo)得

y

,··············(分將其代入②式得

)x

,所以

vxyx

.

··················

(分/

n即

f(zx2(2xyx

.······················································

(8分方法2x,x,,·······························(分xyfxizi···········································(分)f

以.·······························································分.解在圓環(huán)域

0

內(nèi),

111z2

···············

(分所以f(z)··························································4)z(2)nn2在圓環(huán)域z內(nèi),有故zz

z

2(zn

(2(

···········

(分)所以

f(z)

(n2n(n

························································(分)六、解題每題分,16分).解由相似性質(zhì)得

1[f()]()22

··········································()再由頻域微分性質(zhì)得

[()]

idi()F2d24

···················

(分.解原方程即

ft)tt)

·····················································(2)設(shè)

L

f(t))

對(duì)方程兩邊作拉氏變換由卷積定理可得

F(s)

a(s(分2s解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論