2023年山東省聊城市臨清市數(shù)學(xué)八下期末質(zhì)量檢測模擬試題含解析_第1頁
2023年山東省聊城市臨清市數(shù)學(xué)八下期末質(zhì)量檢測模擬試題含解析_第2頁
2023年山東省聊城市臨清市數(shù)學(xué)八下期末質(zhì)量檢測模擬試題含解析_第3頁
2023年山東省聊城市臨清市數(shù)學(xué)八下期末質(zhì)量檢測模擬試題含解析_第4頁
2023年山東省聊城市臨清市數(shù)學(xué)八下期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年八下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在某校舉行的“我的中國夢”演講比賽中,有5名學(xué)生參加決賽,他們決賽的最終成績各不相同,其中的一名學(xué)生要想知道自己能否進(jìn)入前3名,不僅要了解自己的成績,還要了解這5名學(xué)生成績的()A.眾數(shù) B.方差 C.中位數(shù) D.平均數(shù)2.在平面直角坐標(biāo)系的第一象限內(nèi)有一點(diǎn)M,點(diǎn)M到x軸的距離為3,到y(tǒng)軸的距離為4,則點(diǎn)M的坐標(biāo)是()A.(3,-4). B.(4,-3). C.(3,4). D.(4,3).3.從甲、乙、丙、丁四人中選一人參加詩詞大會(huì)比賽,經(jīng)過三輪初賽,他們的平均成績都是分,方差分別是,,,,你認(rèn)為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁4.下列各組數(shù)據(jù)中,不能作為直角三角形邊長的是()A.9,12,15 B.5,12,13 C.3,5,7 D.1,2,5.若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有實(shí)數(shù)根,則k的取值范圍是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠06.將下列多項(xiàng)式因式分解,結(jié)果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+17.如圖,已知一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象與x軸交于點(diǎn)A(3,0),若正比例函數(shù)y=mx(m為常數(shù),且m≠0)的圖象與一次函數(shù)的圖象相交于點(diǎn)P,且點(diǎn)P的橫坐標(biāo)為1,則關(guān)于x的不等式(k-m)x+b<0的解集為()A. B. C. D.8.將矩形紙片按如圖的方式折疊,使點(diǎn)B與點(diǎn)D都與對角線AC的中點(diǎn)O重合,得到菱形,若,則的長為()A. B. C. D.9.如圖,是等腰直角三角形,是斜邊,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后,能與重合,如果,那么的長等于()A. B. C. D.10.如圖,正方形中,為上一點(diǎn),,交的延長線于點(diǎn).若,,則的長為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,菱形ABCD中,AC、BD交于點(diǎn)O,DE⊥BC于點(diǎn)E,連接OE,若∠ABC=120°,則∠OED=______.12.如圖,一根垂直于地面的木桿在離地面高3m處折斷,若木桿折斷前的高度為8m,則木桿頂端落在地面的位置離木桿底端的距離為________m.13.如圖,在中,,,,過點(diǎn)作且點(diǎn)在點(diǎn)的右側(cè).點(diǎn)從點(diǎn)出發(fā)沿射線方向以/秒的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿射線方向以/秒的速度運(yùn)動(dòng),在線段上取點(diǎn),使得,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.當(dāng)__________秒時(shí),以,,,為頂點(diǎn)的四邊形是平行四邊形.14.如圖,AB∥CD,AC⊥BC,∠BAC=65°,則∠BCD=_____.15.如圖,在△ABC中,BC的垂直平分線MN交AB于點(diǎn)D,CD平分∠ACB.若AD=2,BD=3,則AC的長為_____.16.已知線段AB=100m,C是線段AB的黃金分割點(diǎn),則線段AC的長約為。(結(jié)果保留一位小數(shù))17.已知與成正比例關(guān)系,且當(dāng)時(shí),,則時(shí),_______.18.小明從A地出發(fā)勻速走到B地.小明經(jīng)過(小時(shí))后距離B地(千米)的函數(shù)圖像如圖所示.則A、B兩地距離為_________千米.三、解答題(共66分)19.(10分)如圖所示的折線ABC表示從甲地向乙地打長途電話所需的電話費(fèi)y(元)與通話時(shí)間t(分鐘)之間的函數(shù)關(guān)系的圖象.(1)寫出y與t之間的函數(shù)關(guān)系式;(2)通話2分鐘應(yīng)付通話費(fèi)多少元?通話7分鐘呢?20.(6分)已知:如圖,□ABCD中,延長BA至點(diǎn)E,使BE=AD,連結(jié)CE,求證:CE平分∠BCD.21.(6分)甲、乙兩人利用不同的交通工具,沿同一路線分別從A、B兩地同時(shí)出發(fā)勻速前往C地(B在A、C兩地的途中).設(shè)甲、乙兩車距A地的路程分別為y甲、y乙(千米),行駛的時(shí)間為x(小時(shí)),y甲、y乙與x之間的函數(shù)圖象如圖所示.(1)直接寫出y甲、y乙與x之間的函數(shù)表達(dá)式;(2)如圖,過點(diǎn)(1,0)作x軸的垂線,分別交y甲、y乙的圖象于點(diǎn)M,N.求線段MN的長,并解釋線段MN的實(shí)際意義;(3)在乙行駛的過程中,當(dāng)甲、乙兩人距A地的路程差小于30千米時(shí),求x的取值范圍.22.(8分)如圖,△ABC與△CDE都是等邊三角形,點(diǎn)E、F分別在AC、BC上,且EF∥AB(1)求證:四邊形EFCD是菱形;(2)設(shè)CD=2,求D、F兩點(diǎn)間的距離.23.(8分)已知,反比例函數(shù)y=的圖象和一次函數(shù)的圖象交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是-1,點(diǎn)B的縱坐標(biāo)是-1.(1)求這個(gè)一次函數(shù)的表達(dá)式;(2)若點(diǎn)P(m,n)在反比例函數(shù)圖象上,且點(diǎn)P關(guān)于x軸對稱的點(diǎn)Q恰好落在一次函數(shù)的圖象上,求m2+n2的值;(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)在第一象限圖象上的兩點(diǎn),滿足x2-x1=2,y1+y2=3,求△MON的面積.24.(8分)為了讓“兩會(huì)”精神深入青年學(xué)生,增強(qiáng)學(xué)子們的歷史使命和社會(huì)責(zé)任感,某高校黨委舉辦了“奮力奔跑同心追夢”兩會(huì)主題知識(shí)競答活動(dòng),文學(xué)社團(tuán)為選派優(yōu)秀同學(xué)參加學(xué)校競答活動(dòng),提前對甲、乙兩位同學(xué)進(jìn)行了6次測驗(yàn):①收集數(shù)據(jù):分別記錄甲、乙兩位同學(xué)6次測驗(yàn)成績(單位:分)甲178138693乙3818486387②整理數(shù)據(jù):列表格整理兩位同學(xué)的測驗(yàn)成績(單位:分)123456甲178138693乙3818486387③描述數(shù)據(jù):根據(jù)甲、乙兩位同學(xué)的成績繪制折線統(tǒng)計(jì)圖④分析數(shù)據(jù):兩組成績的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:同學(xué)平均數(shù)中位數(shù)眾數(shù)方差甲841.5__________2.3乙843.53__________得出結(jié)論:結(jié)合上述統(tǒng)計(jì)過程,回答下列問題:(1)補(bǔ)全④中表格;(2)甲、乙兩名同學(xué)中,_______(填甲或乙)的成績更穩(wěn)定,理由是______________________(3)如果由你來選擇一名同學(xué)參加學(xué)校的競答活動(dòng),你會(huì)選擇__________(填甲或乙),理由是___________25.(10分)如圖,直線的函數(shù)解析式為,且與軸交于點(diǎn),直線經(jīng)過點(diǎn)、,直線、交于點(diǎn).(1)求直線的函數(shù)解析式;(2)求的面積;(3)在直線上是否存在點(diǎn),使得面積是面積的倍?如果存在,請求出坐標(biāo);如果不存在,請說明理由.26.(10分)目前節(jié)能燈在城市已基本普及,今年山東省面向縣級(jí)及農(nóng)村地區(qū)推廣,為響應(yīng)號(hào)召,某商場計(jì)劃購進(jìn)甲,乙兩種節(jié)能燈共只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:進(jìn)價(jià)(元/只)售價(jià)(元/只)甲型乙型(1)如何進(jìn)貨,進(jìn)貨款恰好為元?(2)設(shè)商場購進(jìn)甲種節(jié)能燈只,求出商場銷售完節(jié)能燈時(shí)總利潤與購進(jìn)甲種節(jié)能燈之間的函數(shù)關(guān)系式;(3)如何進(jìn)貨,商場銷售完節(jié)能燈時(shí)獲利最多且不超過進(jìn)貨價(jià)的,此時(shí)利潤為多少元?

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

由于比賽取前3名進(jìn)入決賽,共有5名選手參加,故應(yīng)根據(jù)中位數(shù)的意義解答即可.【詳解】解:因?yàn)?位進(jìn)入決賽者的分?jǐn)?shù)肯定是5名參賽選手中最高的,而且5個(gè)不同的分?jǐn)?shù)按從大到小排序后,中位數(shù)及中位數(shù)之前的共有3個(gè)數(shù),故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否進(jìn)入決賽了;故選:C.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.2、D【解析】

根據(jù)第一象限內(nèi)點(diǎn)的坐標(biāo)特征,可得答案.【詳解】解:由題意,得

x=4,y=3,

即M點(diǎn)的坐標(biāo)是(4,3),

故選:D.【點(diǎn)睛】本題考查點(diǎn)的坐標(biāo),熟記各象限內(nèi)點(diǎn)的坐標(biāo)特征是解題關(guān)鍵.3、A【解析】

根據(jù)方差的意義做出判斷,方差是衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,數(shù)據(jù)波動(dòng)越小,數(shù)據(jù)越穩(wěn)定,反之,表明數(shù)據(jù)波動(dòng)大,不穩(wěn)定【詳解】解:∵,,,∴∵平均數(shù)一樣∴選甲去參加比賽更合適故選A【點(diǎn)睛】本題考查了方差的意義,熟練掌握方差的意義是解題關(guān)鍵4、C【解析】

根據(jù)勾股定理的逆定理,只要兩邊的平方和等于第三邊的平方即可構(gòu)成直角三角形.因此,只需要判斷兩個(gè)較小的數(shù)的平方和是否等于最大數(shù)的平方即可判斷.【詳解】解:A、92+122=152,根據(jù)勾股定理的逆定理可知是直角三角形,故選項(xiàng)錯(cuò)誤;B、52+122=132,根據(jù)勾股定理的逆定理可知是直角三角形,故選項(xiàng)錯(cuò)誤;C、32+52≠72,根據(jù)勾股定理的逆定理可知不是直角三角形,故選項(xiàng)正確;D、12+32=22,根據(jù)勾股定理的逆定理可知是直角三角形,故選項(xiàng)錯(cuò)誤故選C.【點(diǎn)睛】本題主要考查了勾股定理的逆定理,已知三條線段的長,判斷是否能構(gòu)成直角三角形的三邊,判斷的方法是:計(jì)算兩個(gè)較小的數(shù)的平方和是否等于最大數(shù)的平方即可判斷.5、A【解析】

根據(jù)一元二次方程的定義和判別式的意義得到k≠1且△=22-4k×(-1)≥1,然后求出兩個(gè)不等式的公共部分即可.【詳解】根據(jù)題意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2-4ac:當(dāng)△>1,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=1,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<1,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.6、B【解析】

試題解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合題意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正確;C.x2-2x=x(x-2),含有因式(x-2),不符合題意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合題意,故選B.7、B【解析】

根據(jù)函數(shù)圖像分析即可解題.【詳解】由函數(shù)圖像可知一次函數(shù)單調(diào)遞減,正比例函數(shù)單調(diào)遞增,將(k-m)x+b<0變形,即kx+b<mx,對應(yīng)圖像意義為一次函數(shù)圖像在正比例函數(shù)圖像下方,即交點(diǎn)P的右側(cè),∵點(diǎn)P的橫坐標(biāo)為1,∴即為所求解集.故選B【點(diǎn)睛】本題考查了一次函數(shù)與正比例函數(shù)的圖像問題,數(shù)形結(jié)合的解題方法,中等難度,將不等式問題轉(zhuǎn)化為圖像問題是解題關(guān)鍵,8、D【解析】

解:∵折疊

∴∠DAF=∠FAC,AD=AO,BE=EO,

∵AECF是菱形

∴∠FAC=∠CAB,AOE=90°

∴∠DAF=∠FAC=∠CAB

∵DABC是矩形

∴∠DAB=90°,AD=BC

∴∠DAF+∠FAC+∠CAB=90°

∴∠DAF=∠FAC=∠CAB=30°

∴AE=2OE=2BE

∵AB=AE+BE=3

∴AE=2,BE=1

∴在Rt△AEO中,AO==AD

∴BC=

故選D.9、A【解析】

解:如圖:根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)可知:∠PAP′=∠BAC=90°,AP=AP′=3,根據(jù)勾股定理得:,故選A.10、D【解析】

先根據(jù)題意得出△ABM∽△MCG,故可得出CG的長,再求出DG的長,根據(jù)△MCG∽△EDG即可得出結(jié)論.【詳解】四邊形ABCD是正方形,AB=12,BM=5,.,,,,,,,,即,解得,,,,,,即,解得.故選D.【點(diǎn)睛】本題主要考查相似三角形的判定與性質(zhì),熟知相似三角形的對應(yīng)邊成比例是解答此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、30°【解析】

根據(jù)直角三角形的斜邊中線性質(zhì)可得OE=BE=OD,根據(jù)菱形性質(zhì)可得∠DBE=∠ABC=60°,從而得到∠OEB度數(shù),再依據(jù)∠OED=90°-∠OEB即可.【詳解】∵四邊形ABCD是菱形,

∴O為BD中點(diǎn),∠DBE=∠ABC=60°.

∵DE⊥BC,

∴在Rt△BDE中,OE=BE=OD,

∴∠OEB=∠OBE=60°.

∴∠OED=90°-60°=30°.

故答案是:30°【點(diǎn)睛】考查了菱形的性質(zhì)、直角三角形斜邊中線的性質(zhì),解決這類問題的方法是四邊形轉(zhuǎn)化為三角形.12、4【解析】

由題意得,在直角三角形中,知道了兩直角邊,運(yùn)用勾股定理即可求出斜邊,從而得出木桿頂端落在地面的位置離木桿底端的距離.【詳解】一顆垂直于地面的木桿在離地面處折斷,木桿折斷前的高度為,木桿頂端落在地面的位置離木桿底端的距離為.故答案為:.【點(diǎn)睛】此題考查了勾股定理的應(yīng)用,主要考查學(xué)生對勾股定理在實(shí)際生活中的運(yùn)用能力.13、或14【解析】

根據(jù)點(diǎn)P所在的位置分類討論,分別畫出圖形,利用平行四邊形的對邊相等列出方程,從而求出結(jié)論.【詳解】解:①當(dāng)點(diǎn)P在線段BE上時(shí),∵AF∥BE∴當(dāng)AD=BC時(shí),此時(shí)四邊形ABCD為平行四邊形由題意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=BE-CE=(14-2x)cm∴x=14-2x解得:x=;②當(dāng)點(diǎn)P在EB的延長線上時(shí),∵AF∥BE∴當(dāng)AD=CB時(shí),此時(shí)四邊形ACBD為平行四邊形由題意可知:AD=x,PE=2x∵PC=2cm,∴CE=PE-PC=(2x-2)cm∴BC=CE-BE=(2x-14)cm∴x=2x-14解得:x=14;綜上所述:當(dāng)秒或14秒時(shí),以,,,為頂點(diǎn)的四邊形是平行四邊形.故答案為:秒或14秒.【點(diǎn)睛】此題考查的是平行四邊形的性質(zhì)和動(dòng)點(diǎn)問題,掌握平行四邊形的對邊相等和行程問題中的公式是解決此題的關(guān)鍵.14、25°.【解析】在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.15、【解析】

作AM⊥BC于E,由角平分線的性質(zhì)得出,設(shè)AC=2x,則BC=3x,由線段垂直平分線得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN?EN=x,再由勾股定理得出方程,解方程即可得出結(jié)果.【詳解】解:作AM⊥BC于E,如圖所示:∵CD平分∠ACB,∴,設(shè)AC=2x,則BC=3x,∵M(jìn)N是BC的垂直平分線,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴,∴NE=x,∴BE=BN+EN=x,CE=CN?EN=x,由勾股定理得:AE2=AB2?BE2=AC2?CE2,即52?(x)2=(2x)2?(x)2,解得:x=,∴AC=2x=;故答案為.【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì)、角平分線的性質(zhì)、平行線分線段成比例定理、勾股定理等知識(shí);熟練掌握線段垂直平分線的性質(zhì)和角平分線的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.16、61.8m或38.2m【解析】由于C為線段AB=100cm的黃金分割點(diǎn),則AC=100×61.8m或AC=100-38.238.2m.17、2【解析】

根據(jù)題意,可設(shè);把,代入即可求得k的值,從而求得函數(shù)解析式;代入,即可求得x的值.【詳解】設(shè),把,代入,得:解得:則函數(shù)的解析式為:即把代入,解得:故答案為:2【點(diǎn)睛】本題考查了正比例函數(shù)以及待定系數(shù)法求函數(shù)解析式,稍有難度,熟練掌握正比例函數(shù)的概念和待定系數(shù)法是解答本題的關(guān)鍵.18、20【解析】

根據(jù)圖象可知小明從A地出發(fā)勻速走到B地需要4小時(shí),走3小時(shí)后距離B地5千米,所以小明的速度為5千米/時(shí),據(jù)此解答即可.【詳解】解:根據(jù)題意可知小明從A地出發(fā)勻速走到B地需要4小時(shí),走3小時(shí)后距離B地5千米,所以小明的速度為5千米/時(shí),

所以A、B兩地距離為:4×5=20(千米).

故答案為:20【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,觀察函數(shù)圖象結(jié)合數(shù)量關(guān)系,列式計(jì)算是解題的關(guān)鍵.三、解答題(共66分)19、(1)當(dāng)0<t≤3時(shí),y=2.4;當(dāng)t>3時(shí),y=t-0.6;(2)2.4元;6.4元【解析】試題分析:(1)由圖,當(dāng)時(shí),y為恒值;當(dāng)時(shí),圖象過點(diǎn)(3,2.4)、(5,4.4),可根據(jù)待定系數(shù)法求函數(shù)關(guān)系式;(2)因?yàn)?,所以根?jù)AB段對應(yīng)的函數(shù)即可得到結(jié)果;因?yàn)?>3,所以根據(jù)BC段對應(yīng)的函數(shù)關(guān)系式即可得結(jié)果.(1)當(dāng)時(shí),;當(dāng)時(shí),設(shè)函數(shù)關(guān)系式為,∵圖象過點(diǎn)(3,2.4)、(5,4.4),,解得,y與t之間的函數(shù)關(guān)系式為;(2)當(dāng)時(shí),元,當(dāng)時(shí),元.考點(diǎn):本題考查的是一次函數(shù)的應(yīng)用點(diǎn)評(píng):此類題目的解決需仔細(xì)分析函數(shù)圖象,從中找尋信息,利用待定系數(shù)法求出函數(shù)解析式,從而解決問題.20、見解析【解析】分析:由平行四邊形的性質(zhì)得出AB∥CD,AD=BC,由平行線的性質(zhì)得出∠E=∠DCE,由已知條件得出BE=BC,由等腰三角形的性質(zhì)得出∠E=∠BCE,得出∠DCE=∠BCE即可.詳解:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD=BC,∴∠E=∠DCE,∵BE=AD,∴BE=BC,∴∠E=∠BCE,∴∠DCE=∠BCE,即CE平分∠BCD.點(diǎn)睛:本題考查了平行四邊形的性質(zhì)、等腰三角形的判定與性質(zhì)、平行線的性質(zhì);熟練掌握平行四邊形的性質(zhì),證出∠E=∠BCE是解決問題的關(guān)鍵.21、(1)y甲=10x;y乙=40x+10;(2)表示甲、乙兩人出發(fā)1小時(shí)后,他們相距40千米;(3)在乙行駛的過程中,當(dāng)甲、乙兩人距A地的路程差小于30千米時(shí),x的取值范圍是1.5<x<4.5或5.2<x≤1.【解析】

試題分析:(1)利用待定系數(shù)法即可求出y甲、y乙與x之間的函數(shù)表達(dá)式;

(2)把x=1代入(1)中的函數(shù)解析式,分別求出對應(yīng)的y甲、y乙的值,則線段MN的長=y乙-y甲,進(jìn)而解釋線段MN的實(shí)際意義;

(3)分三種情況進(jìn)行討論:①0<x≤3;②3<x≤5;③5<x≤1.分別根據(jù)甲、乙兩人距A地的路程差小于30千米列出不等式,解不等式即可.試題解析:(1)設(shè)y甲=kx,把(3,180)代入,得3k=180,解得k=10,則y甲=10x;設(shè)y乙=mx+n,把(0,10),(3,180)代入,得,解得,則y乙=40x+10;(2)當(dāng)x=1時(shí),y甲=10x=10,y乙=40x+10=100,則MN=100﹣10=40(千米),線段MN的實(shí)際意義:表示甲、乙兩人出發(fā)1小時(shí)后,他們相距40千米;(3)分三種情況:①當(dāng)0<x≤3時(shí),(40x+10)﹣10x<30,解得x>1.5;②當(dāng)3<x≤5時(shí),10x﹣(40x+10)<30,解得x<4.5;③當(dāng)5<x≤1時(shí),300﹣(40x+10)<30,解得x>5.2.綜上所述,在乙行駛的過程中,當(dāng)甲、乙兩人距A地的路程差小于30千米時(shí),x的取值范圍是1.5<x<4.5或5.2<x≤1.22、(1)見解析;(2)【解析】

(1)由等邊三角形的性質(zhì)得出ED=CD=CE,證出△CEF是等邊三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出結(jié)論;(2)連接DF,與CE相交于點(diǎn)G,根據(jù)菱形的性質(zhì)求出DG,即可得出結(jié)果.【詳解】(1)證明:∵△ABC與△CDE都是等邊三角形,∴ED=CD=CE,∠A=∠B=∠BCA=60°.∴EF∥AB.∴∠CEF=∠A=60°,∠CFE=∠B=60°,∴∠CEF=∠CFE=∠ACB,∴△CEF是等邊三角形,∴EF=CF=CE,∴ED=CD=EF=CF,∴四邊形EFCD是菱形.(2)連接DF與CE交于點(diǎn)G∵四邊形EFCD是菱形∴DF⊥CE,DF=2DG∵CD=2,△EDC是等邊三邊形∴CG=1,DG=∴DF=2DG=,即D、F兩點(diǎn)間的距離為【點(diǎn)睛】本題考查了菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理等知識(shí);熟練掌握菱形的判定與性質(zhì)是解題的關(guān)鍵.23、(1)y=-x-2;(2)m2+n2=12;(2)S△MON=2【解析】

(1)先求得A、B的坐標(biāo),然后根據(jù)待定系數(shù)法求解即可;(2)由點(diǎn)P與點(diǎn)Q關(guān)于x軸對稱可得點(diǎn)Q的坐標(biāo),然后根據(jù)圖象上點(diǎn)的坐標(biāo)特征可求得mn=2,n=m+2,然后代入所求式子整理化簡即得結(jié)果;(2)如圖,過M作MG⊥x軸于G,過N作NH⊥x軸于H,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,利用S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG即可求得結(jié)果.【詳解】解:(1)∵反比例函數(shù)y=的圖象和一次函數(shù)的圖象交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是-1,點(diǎn)B的縱坐標(biāo)是-1,∴A(﹣1,﹣2),B(﹣2,﹣1),設(shè)一次函數(shù)的表達(dá)式為y=kx+b,把A(﹣1,﹣2),B(﹣2,﹣1)代入,得:,解得,∴這個(gè)一次函數(shù)的表達(dá)式為y=﹣x﹣2;(2)∵點(diǎn)P(m,n)與點(diǎn)Q關(guān)于x軸對稱,∴Q(m,-n),∵點(diǎn)P(m,n)在反比例函數(shù)圖象上,∴mn=2,∵點(diǎn)Q恰好落在一次函數(shù)的圖象上,∴﹣n=﹣m﹣2,即n=m+2,∴m(m+2)=2,∴m2+2m=2,∴m2+n2=m2+(m+2)2=2m2+6m+9=2(m2+2m)+9=2×2+9=12;(2)如圖,過M作MG⊥x軸于G,過N作NH⊥x軸于H,∵M(jìn)(x1,y1),N(x2,y2)是反比例函數(shù)y=在第一象限圖象上的兩點(diǎn),∴S△MOG=S△NOH==1,∵x2-x1=2,y1+y2=2,∴S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG===2.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求函數(shù)解析式、反比例函數(shù)系數(shù)k的幾何意義以及坐標(biāo)系中三角形的面積等知識(shí),屬于??碱}型,熟練掌握函數(shù)圖象上點(diǎn)的坐標(biāo)特征和反比例函數(shù)系數(shù)k的幾何意義是解題的關(guān)鍵.24、(1)1;4;(2)乙;乙的方差更小,成績更穩(wěn)定;(3)乙;甲、乙組成績的平均數(shù)相同,乙的中位數(shù)、眾數(shù)都大于甲,乙的方差又比甲的方差小,成績更穩(wěn)定.【解析】

(1)按照眾數(shù)的定義即可求得甲組的眾數(shù);根據(jù)方差的計(jì)算公式可計(jì)算出乙的方差;(2)比較兩組成績的方差即可回答,方差越小越穩(wěn)定;(3)綜合比較兩級(jí)成績的平均數(shù)、中位數(shù)、眾數(shù)、方差的大小即可作出判斷.【詳解】(1)甲組成績1分出現(xiàn)了兩次,是出現(xiàn)次數(shù)最多的,所以甲組成績的眾數(shù)是1(分);乙組成績的方差==4,故答案是:1;4;(2)∵甲的方差是2.3,乙的方差是4,∴乙的方差更小,成績更穩(wěn)定;故答案是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論