數(shù)據(jù)挖掘和模式識別中的矩陣方法Matrix Methods in Data Mining and Pattern Recognition_第1頁
數(shù)據(jù)挖掘和模式識別中的矩陣方法Matrix Methods in Data Mining and Pattern Recognition_第2頁
數(shù)據(jù)挖掘和模式識別中的矩陣方法Matrix Methods in Data Mining and Pattern Recognition_第3頁
數(shù)據(jù)挖掘和模式識別中的矩陣方法Matrix Methods in Data Mining and Pattern Recognition_第4頁
數(shù)據(jù)挖掘和模式識別中的矩陣方法Matrix Methods in Data Mining and Pattern Recognition_第5頁
已閱讀5頁,還剩281頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

fa04_eldenfm1.qxp 2/28/2007 3:24PM Page1

MatrixMethodsinDataMiningandPatternRecognition

fa04_eldenfm1.qxp 2/28/2007 3:24PM Page2

FundamentalsofAlgorithms

Editor-in-Chief:NicholasJ.Higham,UniversityofManchester

TheSIAMseriesonFundamentalsofAlgorithmsisacollectionofshortuser-orientedbooksonstate-of-the-artnumericalmethods.Writtenbyexperts,thebooksprovidereaderswithsufficientknowledgetochooseanappropriatemethodforanapplicationandtounderstandthemethod’sstrengthsandlimitations.Thebookscoverarangeoftopicsdrawnfromnumericalanalysisandscientificcomputing.Theintendedaudiencesareresearchersandpractitionersusingthemethodsandupperlevelundergraduatesinmathematics,engineering,andcomputationalscience.

Booksinthisseriesnotonlyprovidethemathematicalbackgroundforamethodorclassofmethodsusedinsolvingaspecificproblembutalsoexplainhowthemethodcanbedevelopedintoanalgorithmandtranslatedintosoftware.Thebooksdescribetherangeofapplicabilityofamethodandgiveguidanceontroubleshootingsolversandinterpretingresults.Thetheoryispresentedatalevelaccessibletothepractitioner.MATLAB?softwareisthepreferredlanguageforcodespresentedsinceitcanbeusedacrossawidevarietyofplatformsandisanexcellentenvironmentforprototyping,testing,andproblemsolving.

Theseriesisintendedtoprovideguidestonumericalalgorithmsthatarereadilyaccessible,containpracticaladvicenoteasilyfoundelsewhere,andincludeunderstandablecodesthatimplementthealgorithms.

EditorialBoard

PeterBenner DianneP.O’Leary

TechnischeUniversit?tChemnitz UniversityofMaryland

JohnR.Gilbert RobertD.Russell

UniversityofCalifornia,SantaBarbara SimonFraserUniversity

MichaelT.Heath RobertD.Skeel

UniversityofIllinois,Urbana-Champaign PurdueUniversity

C.T.Kelley DannySorensen

NorthCarolinaStateUniversity RiceUniversity

CleveMoler AndrewJ.Wathen

TheMathWorks OxfordUniversity

JamesG.Nagy HenryWolkowicz

EmoryUniversity UniversityofWaterloo

SeriesVolumes

Eldén,L.,MatrixMethodsinDataMiningandPatternRecognition

Hansen,P.C.,Nagy,J.G.,andO’Leary,D.P.,DeblurringImages:Matrices,Spectra,andFilteringDavis,T.A.,DirectMethodsforSparseLinearSystems

Kelley,C.T.,SolvingNonlinearEquationswithNewton’sMethod

fa04_eldenfm1.qxp 2/28/2007 3:24PM Page3

LarsEldén

Link?pingUniversity

Link?ping,Sweden

MatrixMethodsinDataMiningandPatternRecognition

SocietyforIndustrialandAppliedMathematics

Philadelphia

fa04_eldenfm1.qxp 2/28/2007 3:24PM Page4

Copyright?2007bytheSocietyforIndustrialandAppliedMathematics.

10987654321

Allrightsreserved.PrintedintheUnitedStatesofAmerica.Nopartofthisbookmaybereproduced,stored,ortransmittedinanymannerwithoutthewrittenpermissionofthepublisher.Forinformation,writetotheSocietyforIndustrialandAppliedMathematics,3600UniversityCityScienceCenter,Philadelphia,PA19104-2688.

Trademarkednamesmaybeusedinthisbookwithouttheinclusionofatrademarksymbol.Thesenamesareusedinaneditorialcontextonly;noinfringementoftrademarkisintended.

GoogleisatrademarkofGoogle,Inc.

MATLABisaregisteredtrademarkofTheMathWorks,Inc.ForMATLABproductinformation,pleasecontactTheMathWorks,Inc.,3AppleHillDrive,Natick,MA01760-2098USA,508-647-7000,Fax:508-647-7101,info@,

Figures6.2,10.1,10.7,10.9,10.11,11.1,and11.3arefromL.Eldén,Numericallinearalgebraindatamining,ActaNumer.,15:327–384,2006.ReprintedwiththepermissionofCambridgeUniversityPress.

Figures14.1,14.3,and14.4wereconstructedbytheauthorfromimagesappearinginP.N.Belhumeur,J.P.Hespanha,andD.J.Kriegman,Eigenfacesvs.fisherfaces:Recognitionusingclassspecificlinearprojection,IEEETrans.PatternAnal.Mach.Intell.,19:711–720,1997.

LibraryofCongressCataloging-in-PublicationData

Eldén,Lars,1944-

Matrixmethodsindataminingandpatternrecognition/LarsEldén.

p.cm.—(Fundamentalsofalgorithms;04)

Includesbibliographicalreferencesandindex.

ISBN978-0-898716-26-9(pbk.:alk.paper)

Datamining.2.Patternrecognitionsystems—Mathematicalmodels.3.Algebras,Linear.I.Title.

QA76.9.D343E522007

05.74—dc20

2006041348

isaregisteredtrademark.

2007/2/

pagev

Contents

Preface ix

LinearAlgebraConceptsandMatrixDecompositions

1

VectorsandMatricesinDataMiningandPatternRecognition

3

1.1

DataMiningandPatternRecognition...............

3

1.2

VectorsandMatrices........................

4

1.3

PurposeoftheBook........................

7

1.4

ProgrammingEnvironments....................

8

1.5

FloatingPointComputations....................

8

1.6

NotationandConventions.....................

11

2

VectorsandMatrices

13

2.1

Matrix-VectorMultiplication....................

13

2.2

Matrix-MatrixMultiplication...................

15

2.3

InnerProductandVectorNorms.................

17

2.4

MatrixNorms............................

18

2.5

LinearIndependence:Bases....................

20

2.6

TheRankofaMatrix........................

21

3

LinearSystemsandLeastSquares

23

3.1

LUDecomposition..........................

23

3.2

Symmetric,PositiveDefiniteMatrices...............

25

3.3

PerturbationTheoryandConditionNumber...........

26

3.4

RoundingErrorsinGaussianElimination.............

27

3.5

BandedMatrices...........................

29

3.6

TheLeastSquaresProblem....................

31

4

Orthogonality

37

4.1

OrthogonalVectorsandMatrices.................

38

4.2

ElementaryOrthogonalMatrices..................

40

4.3

NumberofFloatingPointOperations...............

45

4.4

OrthogonalTransformationsinFloatingPointArithmetic...

46

v

2007/2/2

pagevi

vi

Contents

5

QRDecomposition

47

5.1

OrthogonalTransformationtoTriangularForm......

...47

5.2

SolvingtheLeastSquaresProblem.............

...51

5.3

ComputingorNotComputingQ..............

...52

5.4

FlopCountforQRFactorization..............

...53

5.5

ErrorintheSolutionoftheLeastSquaresProblem....

...53

5.6

UpdatingtheSolutionofaLeastSquaresProblem.....

...54

6

SingularValueDecomposition

57

6.1

TheDecomposition......................

...57

6.2

FundamentalSubspaces....................

...61

6.3

MatrixApproximation....................

...63

6.4

PrincipalComponentAnalysis................

...66

6.5

SolvingLeastSquaresProblems...............

...66

6.6

ConditionNumberandPerturbationTheoryfortheLeastSquares

Problem............................

...69

6.7

Rank-DeficientandUnderdeterminedSystems.......

...70

6.8

ComputingtheSVD.....................

...72

6.9

CompleteOrthogonalDecomposition............

...72

7

Reduced-RankLeastSquaresModels

75

7.1

TruncatedSVD:PrincipalComponentRegression.....

...77

7.2

AKrylovSubspaceMethod.................

...80

8

TensorDecomposition

91

8.1

Introduction..........................

...91

8.2

BasicTensorConcepts....................

...92

8.3

ATensorSVD.........................

...94

8.4

ApproximatingaTensorbyHOSVD............

...96

9

ClusteringandNonnegativeMatrixFactorization

101

9.1

Thek-MeansAlgorithm...................

...102

9.2

NonnegativeMatrixFactorization..............

...106

II

DataMiningApplications

10

ClassificationofHandwrittenDigits

113

10.1HandwrittenDigitsandaSimpleAlgorithm........

...113

10.2ClassificationUsingSVDBases...............

...115

10.3

TangentDistance.......................

...122

11

TextMining

129

11.1PreprocessingtheDocumentsandQueries.........

...130

11.2TheVectorSpaceModel...................

...131

11.3

LatentSemanticIndexing...................

...135

11.4

Clustering...........................

...139

2007/2/2

pagevii

Contents vii

11.5 NonnegativeMatrixFactorization.................141

11.6 LGKBidiagonalization.......................142

11.7 AveragePerformance........................145

12 PageRankingforaWebSearchEngine 147

12.1 Pagerank...............................147

12.2 RandomWalkandMarkovChains.................150

12.3 ThePowerMethodforPagerankComputation..........154

12.4 HITS.................................159

13 AutomaticKeyWordandKeySentenceExtraction 161

13.1 SaliencyScore............................161

13.2 KeySentenceExtractionfromaRank-kApproximation.....165

14 FaceRecognitionUsingTensorSVD 169

14.1 TensorRepresentation .......................169

14.2 FaceRecognition ..........................172

14.3 FaceRecognitionwithHOSVDCompression...........175

IIIComputingtheMatrixDecompositions

15 ComputingEigenvaluesandSingularValues 179

15.1 PerturbationTheory ........................180

15.2 ThePowerMethodandInverseIteration.............185

15.3 SimilarityReductiontoTridiagonalForm.............187

15.4 TheQRAlgorithmforaSymmetricTridiagonalMatrix.....189

15.5 ComputingtheSVD ........................196

15.6 TheNonsymmetricEigenvalueProblem..............197

15.7 SparseMatrices ...........................198

15.8 TheArnoldiandLanczosMethods ................200

15.9 Software ...............................207

Bibliography 209

Index 217

2007/2/2

pageviii

2007/2/2

pageix

Preface

ThefirstversionofthisbookwasasetoflecturenotesforagraduatecourseondataminingandapplicationsinscienceandtechnologyorganizedbytheSwedishNationalGraduateSchoolinScientificComputing(NGSSC).Sincethenthemate-rialhasbeenusedandfurtherdevelopedforanundergraduatecourseonnumericalalgorithmsfordataminingandITatLink¨opingUniversity.Thisisasecondcourseinscientificcomputingforcomputersciencestudents.

Thebookisintendedprimarilyforundergraduatestudentswhohavepre-viouslytakenanintroductoryscientificcomputing/numericalanalysiscourse.Itmayalsobeusefulforearlygraduatestudentsinvariousdataminingandpatternrecognitionareaswhoneedanintroductiontolinearalgebratechniques.

Thepurposeofthebookistodemonstratethatthereareseveralverypowerfulnumericallinearalgebratechniquesforsolvingproblemsindi?erentareasofdataminingandpatternrecognition.Toachievethisgoal,itisnecessarytopresentmaterialthatgoesbeyondwhatisnormallycoveredinafirstcourseinscientificcomputing(numericalanalysis)ataSwedishuniversity.Ontheotherhand,sincethebookisapplicationoriented,itisnotpossibletogiveacomprehensivetreatmentofthemathematicalandnumericalaspectsofthelinearalgebraalgorithmsused.

Thebookhasthreeparts.Afterashortintroductiontoacoupleofareasofdataminingandpatternrecognition,linearalgebraconceptsandmatrixdecom-positionsarepresented.Ihopethatthisisenoughforthestudenttousematrixdecompositionsinproblem-solvingenvironmentssuchasMATLABr.Somemath-ematicalproofsaregiven,buttheemphasisisontheexistenceandpropertiesofthematrixdecompositionsratherthanonhowtheyarecomputed.InPartII,thelinearalgebratechniquesareappliedtodataminingproblems.Naturally,thedataminingandpatternrecognitionrepertoireisquitelimited:Ihavechosenproblemareasthatarewellsuitedforlinearalgebratechniques.InordertouseintelligentlythepowerfulsoftwareforcomputingmatrixdecompositionsavailableinMATLAB,etc.,someunderstandingoftheunderlyingalgorithmsisnecessary.AveryshortintroductiontoeigenvalueandsingularvaluealgorithmsisgiveninPartIII.

Ihavenothadtheambitiontowriteabookofrecipes:“givenacertainproblem,hereisanalgorithmforitssolution.”Thatwouldbedi?cult,astheareaisfartoodiversetogiveclear-cutandsimplesolutions.Instead,myintentionhasbeentogivethestudentasetoftoolsthatmaybetriedastheyarebut,morelikely,thatwillneedtobemodifiedtobeusefulforaparticularapplication.SomeofthemethodsinthebookaredescribedusingMATLABscripts.Theyshouldnot

ix

2007/2/2

pagex

x Preface

beconsideredasseriousalgorithmsbutratheraspseudocodesgivenforillustrationpurposes.

Acollectionofexercisesandcomputerassignmentsareavailableatthebook’sWebpage:/books/fa04.

ThesupportfromNGSSCforproducingtheoriginallecturenotesisgratefullyacknowledged.Thelecturenoteshavebeenusedbyacoupleofcolleagues.ThanksareduetoGeneGolubandSaaraHyv¨onenforhelpfulcomments.Severalofmyownstudentshavehelpedmetoimprovethepresentationbypointingoutinconsistenciesandaskingquestions.IamindebtedtoBerkantSavasforlettingmeuseresultsfromhismaster’sthesisinChapter10.Threeanonymousrefereesreadearlierversionsofthebookandmadesuggestionsforimprovements.Finally,IwouldliketothankNickHigham,serieseditoratSIAM,forcarefullyreadingthemanuscript.Histhoughtfuladvicehelpedmeimprovethecontentsandthepresentationconsiderably.

LarsEld′en

Link¨oping,October2006

2007/2/2

page

PartI

LinearAlgebraConceptsand

MatrixDecompositions

2007/2/2

page

2007/2/2

page3

Chapter1

VectorsandMatricesinDataMiningandPatternRecognition

1.1 DataMiningandPatternRecognition

Inmodernsociety,hugeamountsofdataarecollectedandstoredincomputerssothatusefulinformationcanlaterbeextracted.Oftenitisnotknownatthetimeofcollectionwhatdatawilllaterberequested,andthereforethedatabaseisnotdesignedtodistillanyparticularinformation,butratheritis,toalargeextent,unstructured.Thescienceofextractingusefulinformationfromlargedatasetsisusuallyreferredtoas“datamining,”sometimeswiththeadditionof“knowledgediscovery.”

Patternrecognitionisoftenconsideredtobeatechniqueseparatefromdatamining,butitsdefinitionisrelated:“theactoftakinginrawdataandmakinganactionbasedonthe‘category’ofthepattern”[31].Inthisbookwewillnotemphasizethedi?erencesbetweentheconcepts.

Therearenumerousapplicationareasfordatamining,rangingfrome-business[10,69]tobioinformatics[6],fromscientificapplicationssuchastheclassificationofvolcanosonVenus[21]toinformationretrieval[3]andInternetsearchengines[11].

Dataminingisatrulyinterdisciplinaryscience,inwhichtechniquesfromcomputerscience,statisticsanddataanalysis,linearalgebra,andoptimizationareused,ofteninarathereclecticmanner.Duetothepracticalimportanceoftheapplications,therearenownumerousbooksandsurveysinthearea[24,25,31,35,45,46,47,49,108].

Itisnotanexaggerationtostatethateverydaylifeisfilledwithsituationsinwhichwedepend,oftenunknowingly,onadvancedmathematicalmethodsfordatamining.Methodssuchaslinearalgebraanddataanalysisarebasicingredientsinmanydataminingtechniques.Thisbookgivesanintroductiontothemathematicalandnumericalmethodsandtheiruseindataminingandpatternrecognition.

3

2007/2/2

page4

Chapter1.VectorsandMatricesinDataMiningandPatternRecognition

1.2 VectorsandMatrices

Thefollowingexamplesillustratetheuseofvectorsandmatricesindatamining.Theseexamplespresentthemaindataminingareasdiscussedinthebook,andtheywillbedescribedinmoredetailinPartII.

Inmanyapplicationsamatrixisjustarectangulararrayofdata,andtheelementsarescalar,realnumbers:

a11

a21

A= .

.

.

am1

a12

a1n

a22······

a2n

Rmn

a

.

a

.

×.

..

···

..

m2

mn

Totreatthedatabymathematicalmethods,somemathematicalstructuremustbeadded.Inthesimplestcase,thecolumnsofthematrixareconsideredasvectorsinRm.

Example1.1.Term-documentmatricesareusedininformationretrieval.Con-siderthefollowingselectionoffivedocuments.1Keywords,whichwecallterms,aremarkedinboldface.2

Document1: TheGoogleTMmatrixPisamodeloftheInternet.

Document2: PijisnonzeroifthereisalinkfromWebpagejtoi.

Document3: TheGooglematrixisusedtorankallWebpages.

Document4: Therankingisdonebysolvingamatrixeigenvalueproblem.

Document5: Englanddroppedoutofthetop10intheFIFAranking.

Ifwecountthefrequencyoftermsineachdocumentwegetthefollowingresult:

Term

Doc1

Doc2

Doc3

Doc4

Doc5

eigenvalue

0

0

0

1

0

England

0

0

0

0

1

FIFA

0

0

0

0

1

Google

1

0

1

0

0

Internet

1

0

0

0

0

link

0

1

0

0

0

matrix

1

0

1

1

0

page

0

1

1

0

0

rank

0

0

1

1

1

Web

0

1

1

0

0

InDocument5,FIFAistheF′ed′erationInternationaledeFootballAssociation.Thisdocumentisclearlyconcernedwithfootball(soccer).Thedocumentisanewspaperheadlinefrom2005.After

the2006WorldCup,Englandcamebackintothetop10.

2Toavoidmakingtheexampletoolarge,wehaveignoredsomewordsthatwouldnormallybeconsideredasterms(keywords).Notealsothatonlythestemofthewordissignificant:“ranking”isconsideredthesameas“rank.”

2007/2/2

page5

1.2.VectorsandMatrices

5

Thuseachdocumentisrepresentedbyavector,orapoint,inR10,andwecanorganizealldocumentsintoaterm-documentmatrix:

00010

0

0

0

0

1

0

0

0

0

1

A=

.

1

0

1

0

0

1

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

1

1

0

0

0

0

1

1

1

0

1

1

0

0

Nowassumethatwewanttofindalldocumentsthatarerelevanttothequery“rankingofWebpages.”Thisisrepresentedbyaqueryvector,constructedinawayanalogoustotheterm-documentmatrix:

0

0

0

0

0

10

q= ∈R.

0

0

1

1

1

Thusthequeryitselfisconsideredasadocument.Theinformationretrievaltaskcannowbeformulatedasamathematicalproblem:findthecolumnsofAthatareclosetothevectorq.TosolvethisproblemwemustusesomedistancemeasureinR10.

Intheinformationretrievalapplicationitiscommonthatthedimensionmislarge,oftheorder106,say.Also,asmostofthedocumentscontainonlyasmallfractionoftheterms,mostoftheelementsinthematrixareequaltozero.Suchamatrixiscalledsparse.

Somemethodsforinformationretrievaluselinearalgebratechniques(e.g.,sin-gularvaluedecomposition(SVD))fordatacompressionandretrievalenhancement.VectorspacemethodsforinformationretrievalarepresentedinChapter11.

Oftenitisusefultoconsiderthematrixnotjustasanarrayofnumbers,orasasetofvectors,butalsoasalinearoperator.DenotethecolumnsofA

a1j

a2j

a = . , j=1,2,...,n,

·j .

.

amj

2007/2/2

page6

Chapter1.VectorsandMatricesinDataMiningandPatternRecognition

andwrite

A=a·1 a·2 ···a·n.

Thenthelineartransformationisdefined

x2

··

·

x1

..

y=Ax=a1a2

...an

.

=

n

xja·j.

j=1

xn

Example1.2.Theclassificationofhandwrittendigitsisamodelprobleminpatternrecognition.Herevectorsareusedtorepresentdigits.Theimageofonedigitisa16×16matrixofnumbers,representinggrayscale.ItcanalsoberepresentedasavectorinR256,bystackingthecolumnsofthematrix.Asetofndigits(handwritten3’s,say)canthenberepresentedbyamatrixA∈R256×n,andthecolumnsofAspanasubspaceofR256.WecancomputeanapproximatebasisofthissubspaceusingtheSVDA=UΣVT.Threebasisvectorsofthe“3-subspace”areillustratedinFigure1.1.

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2

2

2

4

4

4

6

6

6

8

8

8

10

10

10

12

12

12

14

14

14

16

16

16

2

4

6

8

10

12

14

16

2

4

6

8

10

12

14

16

2

4

6

8

10

12

14

16

Figure1.1.HandwrittendigitsfromtheU.S.PostalServicedatabase[47],andbasisvectorsfor3’s(bottom).

Letbbeavectorrepresentinganunknowndigit.Wenowwanttoclassify(automatically,bycomputer)theunknowndigitasoneofthedigits0–9.Givena

setofapproximatebasisvectorsfor3’s,u1,u2,...,uk,wecandeterminewhetherkbisa3bycheckingifthereisalinearcombinationofthebasisvectors,j=1xjuj,suchthat

k

b? xjuj

j=1

2007/2/2

page7

1.3.PurposeoftheBook

7

issmall.Thus,herewecomputethecoordinatesofbinthebasis{uj}kj=1.

InChapter10wediscussmethodsforclassificationofhandwrittendigits.

Theveryideaofdataminingistoextractusefulinformationfromlarge,oftenunstructured,setsofdata.Thereforeitisnecessarythatthemethodsusedaree?cientandoftenspeciallydesignedforlargeproblems.Insomedataminingapplicationshugematricesoccur.

Example1.3.ThetaskofextractinginformationfromallWebpagesavailableontheInternetisdonebysearchengines.ThecoreoftheGooglesearchengineisamatrixcomputation,probablythelargestthatisperformedroutinely[71].TheGooglematrixPisoftheorderbillions,i.e.,closetothetotalnumberofWebpagesontheInternet.ThematrixisconstructedbasedonthelinkstructureoftheWeb,andelementPijisnonzeroifthereisalinkfromWebpagejtoi.

ThefollowingsmalllinkgraphillustratesasetofWebpageswithoutlinksandinlinks:

1

2

3

4

5

6

AcorrespondinglinkgraphmatrixisconstructedsothatthecolumnsandrowsrepresentWebpagesandthenonzeroelementsincolumnjdenoteoutlinksfromWebpagej.Herethematrixbecomes

0

1

0

0

0

0

3

1

0

0

0

0

0

3

0

0

0

0

3

3

1

1

P=

0

3

0

0

3

2

.

1

1

3

3

1

2

1

1

0

0

0

1

0

0

1

0

0

3

Forasearchenginetobeuseful,itmustuseameasureofqualityoftheWebpages.TheGooglematrixisusedtorankallthepages.TherankingisdonebysolvinganeigenvalueproblemforP;seeChapter12.

1.3 PurposeoftheBook

Thepresentbookismeanttobenotprimarilyatextbookinnumericallinearalge-brabutratheranapplication-orientedintroductiontosometechniquesinmodern

2007/2/2

page8

Chapter1.VectorsandMatricesinDataMiningandPatternRecognition

linearalgebra,withtheemphasisondataminingandpatternrecognition.Itde-pendsheavilyontheavailabilityofaneasy-to-useprogrammingenvironmentthatimplementsthealgorithmsthatwewillpresent.Thus,insteadofdescribingindetailthealgorithms,wewillgiveenoughmathematicaltheoryandnumericalbackgroundinformationsothatareadercanunderstandandusethepowerfulsoftwarethatisembeddedinapackagelikeMATLAB[68].

Foramorecomprehensivepresentationofnumericalandalgorithmicaspectsofthematrixdecompositionsusedinthisbook,seeanyoftherecenttextbooks[29,42,50,92,93,97].Thesolutionoflinearsystemsandeigenvalueproblemsforlargeandsparsesystemsisdiscussedatlengthin[4,5].Forthosewhowanttostudythedetailedimplementationofnumericallinearalgebraalgorithms,softwareinFortran,C,andC++isavailableforfreeviatheInternet[1].

Itwillbeassumedthatthereaderhasstudiedintroductorycoursesinlinearalgebraandscientificcomputing(numericalanalysis).Familiaritywiththebasicsofamatrix-orientedprogramminglanguagelikeMATLABshouldhelponetofollowthepresentation.

1.4 ProgrammingEnvironments

InthisbookweuseMATLAB[68]todemonstratetheconceptsandthealgorithms.Ourcodesarenottobeconsideredassoftware;insteadtheyareintendedtodemon-stratethebasicprinciples,andwehaveemphasizedsimplicityratherthane?ciencyandrobustness.Thecodesshouldbeusedonlyforsmallexperimentsandneverforproductioncomputations.

EvenifweareusingMATLAB,wewanttoemphasizethatanyprogram-mingenvironmentthatimplementsmodernmatrixcomputationscanbeused,e.g.,Mathematicar[112]orastatisticspackage.

1.5 FloatingPointComputations

1.5.1 FlopCounts

Theexecutiontimesofdi?erentalgorithmscansometimesbecomparedbycountingthenumberoffloatingpointoperations,i.e.,arithmeticoperationswithfloatingpointnumbers.Inthisbookwefollowthestandardprocedure[42]andcounteachoperationseparately,andweusethetermflopforoneoperation.Thusthestatementy=y+a*x,wherethevariablesarescalars,countsastwoflops.

Itiscustomarytocountonlythehighest-orderterm(s).Weemphasizethatflopcountsareoftenverycrudemeasuresofe?ciencyandcomputingtimeandcanevenbemisleadingundercertaincircumstances.Onmoderncomputers,whichinvariablyhavememoryhierarchies,thedataaccesspatternsareveryimportant.Thustherearesituationsinwhichtheexecutiontimesofalgorithmswiththesameflopcountscanvarybyanorderofmagnitude.

2007/2/2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論