版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Reviewercommentsas#ReviewerCommentsforJPEM-D-13-Inthispaper,theauthordevelopedanovelmethodbasedonamorphologicalfilterandsignalcomplexitymeasurefromaneweddy-currentsensor.Theresultsshowthattheproposedmethodiseffectivefordetectingqualityproblemswithrollerbearings,showingthehighsensitivityinresolveweaksignals.Itmaybeextendedtotheproblemsofsignalprocessinginaccelerationbasedmethod.However,moreeffortsshouldbegiventomakecommentsonthemethodusedtosupportthemethodsinuse.InadditionpleaseimprovetheEnglishtoreducetyandgrrerrors.AlsopleaseaddresstheconcernsComment1:Changethe"Differentfromsignalsintheprocess…"into"UnlikesignalsTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment2:PleaseconsiderthefollowingsuggestionforBearingdefectiveinspectionysavitalroleinbearingqualitycontrol.Unlikesignalsintheprocessofconditionmonitoringandfaultdiagnosis,thesignalcharacteristicofdefectivebearingsismuchweakeranddifficulttobefiedthroughtheaccelerationbasedtechniques.Inthispaper,anovelsystemisdevelopedtoinspectautomaticallythesmalldefectsofrollerbearingsforon-linequalitycontrol.Ratherthanusingaccelerationbasedtechniquesthesystememploysahighsensitiveeddycurrentsensortomeasurethediscementprofilesoftheouterraceforhighsignaltonoiseratio.Furthermore,amorphologicalfilterisusedtoenhancethefeaturesignalwhichissubsequentlymeasuredbyKolmogorovcomplexitymeasure.Bothsimulatedsignalsandmeasureddatashowthatthissystemisabletodiagnosedefectsincludingabnormalsurfaceroundness,waviness,misalignedraceswhicharetypicalqualityproblemsinbearingmanufacturinglines.Theauthors’Answer:Thanksalotforthereviewer’ssuggestion.CorrectedComment3:Inthefirstparagraphinintroduction,inline4,"inspectionmeasurescanbeclassifiedintotwostepstoavoiddefects",shouldbe"avoid";inline8,"causedbymanufacturingerrororabrastivewear",shouldbe"abrasive".Theauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment4:Inthefirstparagraphofsection2.1,line3andline5,andsection2.2,line8,"elestic"shouldbe"elastic".Theauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment5:RevisethefirstsentenceofthethirdTheauthors’Thesentencehasbeenchangedasfollow:Unlikesignalsintheprocessofconditionmonitoringandfaultdiagnosis2,3,4,5,thesignalcharacteristicofdefectivebearingsisquiteweak.Comment6:CorrespondingpreviousworksusingnewsignalprocessingmethodsshouldbeTheauthors’Answer:Thankstothereviewer'sadvice,wehavejoinedthefollowingsentencesandreferencesintheintroduction.PartAseriesofmethodoftheextractionofweaksignalhasbeenbroughtout,suchasthestochasticdifficultyofthelatesignalprocessing.503,2014.pp.1773-1785,2011.Yaguo,Lei.,Jing,Lin.,Zhengjia,He.,“Applicationofanimprovedkurtogrammethodforfault1749,2011.Haiyang,Liu.,Weiguo,Huang.,Shibin,Wang.,Zhongkui,Zhu.,“AdaptivespectralkurtosisfilteringbasedonMorletwaveletanditsapplicationforsignaltransientsdetection,”MechanicalSystemsandSignalProcessing.,2014.PartAsanindexinthetime,theKolmogorovhasbeenfoundtobeaneffectivetoolforsignalysisandconditionassessmentinabearingsystem11.TheKolmogorovcanbeusedtoextractcharacteristicswhicharethenusedtoevaluatebearingqualityandtotracetosourcesRuqiang,Yan.,“ComplexityasaMeasureforMachineHealthEvaluation,”IEEETransactionsonIAM,Vol.55,pp.1327-1334,2004.Part Jing,Wang.,Guanghua,Xu.,“ApplicationofimprovedmorphologicalfiltertotheextractionofTheoreticalComment7:Section2.1andsection2.2havethesameTheauthors’Answer:Thankstothereviewer'sadvice,wehavechangedthetitleofsection2.2as“Measuringbearingdefectsbymeansofthemorphologicalfilter”Comment8:Fig.1(a)"shows"….,ratherthan"describes".Inaddition,thefigurequalityshouldbeTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment9:Inthefirstparagraphofsection2.1,line3andline5,andsection2.2,line8,"elestic"shouldbe"elastic".Theauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment10:Ln42,p2,changingwhile"While"into"However"willmakemoreTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment11:Inthethirdparagraphofsection2.2,"Inthispaper,weutilizeanaverageweightedcombinationofopen-closingandclose-openingoperation",pleaseexinwhychoosethismethod.Theauthors’Answer:Theopeningoperationcansmooththesignalfrombelowbycuttingdownitspeaks,andtheclosingoperationcansmooththesignalfromabovebyfillingupitsvalleys.AsshowninFig.7,thediscementsensorsignalisclosetothesymmetricalshapeaftertheoperationofremovingmean.Thusweutilizeanaverageweightedcombinationofopen-closingandclose-openingoperationinthispaper.Fig.7.Signalsoffivetypesofbearingsa)Qualityqualifiedbearings.b)Abnormalroughnessonouterraceway.c)Abnormalroughnessoninnerraceway.d)Bruiseonouterraceway.e)Bruiseoninnerraceway.Comment12:Insection2.3,pleaseaddmoreexnationaboutthecomplexitymeasurealgorithmtomakeitclearer.Theauthors’Comment13:Fromthegraphs,itlooksthatthemaintrendofsignalscanberemovedbyaconventionallowpassfilterwhichisefficientandreliable.Whatisthekeybenefitforusingthemorphologicalfilter?Theauthors’Fig.9. Resultsofmorphologicalfiltera)Theoriginalsignal.b)Theperiodicsignal.c)Theimpactsignal.WiththeproblemofthesamefrequencyAsshowninFig.9,theimpulsivesignalswhichareintensityrelatedtothequalityofbearingshavethesamefrequencywiththemaintrendofsignals.Thelowpassfiltermayfilterusefulcompositionsofsignals.MorphologicalfiltercanhelptoidentifydifferentqualityAsshowninFig.7,signalsofbearingswithabnormalroughnesstrendtocosinewaveformclasses,whilesignalsofbearingswithbruiseproblemstrendtotrianglewaveformclasses.Morphologicalfiltercanhelptoidentifydifferentqualityproblemstosomeextent.Morphologicalfilterhashighcodeexecutionefficiency.Therunningtimeisabout0.36susingaThinkpadT410icomputer,whichcanbeusedforon-lineoroff-linemonitoring.Comment14:Line18,P3"tocharacterize…"ratherthanTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment15:Line17,ReferencesarerequiredforthekeyfactsdescribedthisTheauthorsAnswer:8(12)Comment16:HowthedigitalizedsignalcanbemanipulatedasstringsforcalculatingtheKolmogorovcomplexityvalues.Morereferencesordescriptionrequired.Theauthors’找合適的參考文獻(xiàn)即可TheKolmogorovcomplexityhasbeenfoundtobeaneffectivetoolforsignal ysisandconditionassessmentinabearingsystem.Asanindexinthetime ,theKolmogorovhasbeenfoundtobeaneffectivetoolforsignalysisandconditionassessmentinabearingsystem11.TheKolmogorovcanbeusedtoextractcharacteristicswhicharethenusedtoevaluatebearingqualityandtotracetosources11.Ruqiang,Yan.,“ComplexityasaMeasureforMachineHealthEvaluation,”IEEETransactionsonIAM,Vol.55,pp.1327-1334,2004.Comment17:WhatisthetypeofnoiseinthesimulatedTheauthors’Thecomplexityofthesignaliscloselyrelatedtothecompositionofsignal.Thenoisedeterminesthecomplexityofthesignalinthesimulation.Theusednoiseiscolorednoise,containingdifferentspectrumstructures.Asforthewhitenoise,regardlessofitsintensitychange,theresultisverifieditscomplexityisessentiallythesame.Fig.3SimulationsoftheIntheoriginalmanuscript,theauthorprovidesresultsofthesimulationsignalandthecomplexityasFig.3.Thenoiseusedcomefromanactualrun-to-failuretestmeasuredbyanaccelerationsensor[].Afterreviewingandcarefullyysistheopinionofthereviewer,authorsthinkthatthepictureisnotasgoodastodescribethecomplexityofthesignalanditmayconfusereaders.Thereforeweuseanotherfigureinthispaperasbelow.Thosedatasetsareconstructedwithdifferenttypicalsignalssuchassinusoidal,sinusoidalwithamplitudemodulation,sinusoidalwithfrequencymodulation,andwhitenoise,andtheyareusedtotesttheverificationofcomplexity.(要加到Fig.3.Lempel-ZivindexvaluesofdifferentsimulationofThanksforthereviewers'valuablesuggestionwhichhasmadeanimportantComment18:ThetitleofFig.3isnotcorrect,pleaseTheauthors’Answer:Thanksforthereviewer’ssuggestion.ThetitleofFig.3hasbeenchangedwith“Simulationsofthecomplexity”.Comment19:Moredetailshouldbeprovidedforthesensor.Especiallyhowdifferencefromanormaleddycurrentsensorthatmakesitmoresensitiveandaccurate.Theauthors’Answer:Thanksforthereviewer’sTheelasticdeformationisquitesmall,andthevalueisintherangeof0.1to20Duetothevibrationtyisverysmall;therearealmostnooutputsignalsfromaccelerationsensor.Thankyouverymuchforthereferees’preciousopinionandourteamisreadytobuyanaccelerationsensorfromNSKforthenextexperimentTheeddycurrentsensorisusedtodetectthetinydeformationofouterring.Comparedwithaccelerationsensor,thismethodismoresensitiveandaccurate.However,thecommoneddycurrentsensorscanachievethecorrespondingdetectionresultsaslongasthedetectionrangeiswithintherangeof0.1to20microns.I'mverysorrybecauseoftheauthors’inappropriatedescribebringtheconfusiontothereviewer.Comment20:AcomparativeresultshouldbeprovidedtoconvincetheproposedmethodismoreTheauthors’Answer:Thanksforthereviewer’sTherearequiteanumberofpapersaboutthefaultdetectionofbearings,whiletheresearchofproblemsofbearingqualityisless.Themaintestingmethodisthroughthedetectionofthestaticgeometrysizeofeachcomponentofbearings.Wealsotrytousethevibrationaccelerationsensorandtheacousticemissionsensor;resultsshowthatthevibrationtyisverysmall;therearealmostnooutputsignalsfromaccelerationsensor,whichcannotbeusedforthedetectionoftheproblemofthebearingquality.Itisfoundthattheacousticemissionsensorcanbeimplementedtodetectthelubricationstateofbearings,whileitcanalsonotbeusedforthedetectionoftheproblemofthebearingquality.Theauthorswouldliketothankthereviewerfortheirinsightfulcommentsandusefulsuggestionsthathelptoimprovethequalityofthiswork.Reviewer#2:Thispapermainlydiscussesbearingqualityevaluationbasedonmorphologyfilterandthekolmogorovcomplexity.Thispaperissomewhatinteresting,butitneedtobefurtherimproved.Thecommentsaregivenbelow.Comment1:Inintroduction,themainbearingdefectsevaluationmethodsintime brieflyintroduced.Othermethod,suchasmethodsinfrequencyandtime-frequency ,shouldbeintroduced.Thenewlituresaboutfaultdiagnosisbasedonmorphologyfilterandcomplexitywhicharepublishedinthisjournalorotherjournals,shouldbedetailedinthefirstsection.Theauthors’Answer:Thankstothereviewer'sadvice,wehavejoinedthefollowingsentencesandreferencesintheintroduction.PartAseriesofmethodoftheextractionofweaksignalhasbeenbroughtout,suchasthestochasticdifficultyofthelatesignalprocessing.503,2014.pp.1773-1785,2011.Yaguo,Lei.,Jing,Lin.,Zhengjia,He.,“Applicationofanimprovedkurtogrammethodforfault1749,2011.Haiyang,Liu.,Weiguo,Huang.,Shibin,Wang.,Zhongkui,Zhu.,“AdaptivespectralkurtosisfilteringbasedonMorletwaveletanditsapplicationforsignaltransientsdetection,”MechanicalSystemsandSignalProcessing.,2014.PartAsanindexinthetime,theKolmogorovhasbeenfoundtobeaneffectivetoolforsignalysisandconditionassessmentinabearingsystem11.TheKolmogorovcanbeusedtoextractcharacteristicswhicharethenusedtoevaluatebearingqualityandtotracetosourcesRuqiang,Yan.,“ComplexityasaMeasureforMachineHealthEvaluation,”IEEETransactionsonIAM,Vol.55,pp.1327-1334,2004.Part Jing,Wang.,Guanghua,Xu.,“ApplicationofimprovedmorphologicalfiltertotheextractionofButitisnotclearwhetherenoughorbatchbearingsareusedtoobtaintheresultinthesetwotables.Howmanybearingsusedshouldbeexinedclearlyasnowitisveryvague.Theauthors’Answer:Thankstothereviewer'spreciousremind,andwehavechangedthemanuscriptasfollow:Duetothesupportoftheproject,testbearingsinthispaperare8306madebytheLYC .Thecompositionofsamplesisasfollow.Thenumberofbruisetestbearingsis20,and10bearingshavethebruiseontheinner
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 集裝箱交易合同案例
- 法定節(jié)假日有哪些
- 六年級(jí)道德與法治上冊(cè) 第三單元 我們的國(guó)家機(jī)構(gòu) 5《國(guó)家機(jī)構(gòu)有哪些》教案2 新人教版
- 高中化學(xué)《離子反應(yīng)》教學(xué)設(shè)計(jì)
- 2024年春八年級(jí)物理下冊(cè) 第九章 第1節(jié) 壓強(qiáng)教案 (新版)新人教版
- 2024-2025學(xué)年高中生物 第二章 細(xì)胞的化學(xué)組成 2.2 細(xì)胞中的脂質(zhì)教案 蘇教版必修1
- 安徽省長(zhǎng)豐縣八年級(jí)生物上冊(cè) 6.1.1 嘗試對(duì)生物進(jìn)行分類教案 (新版)新人教版
- 2024-2025學(xué)年高中化學(xué) 第4章 第3節(jié) 蛋白質(zhì)和核酸教案 新人教版選修5
- 汽車試驗(yàn)技術(shù) 課件 項(xiàng)目1 汽車試驗(yàn)概述
- 綜合能源托管合同(2篇)
- 2024-2030年版中國(guó)測(cè)繪行業(yè)發(fā)展機(jī)遇分析及投資策略研究報(bào)告
- 《雨污水管道施工方案》
- 2024年中國(guó)建筑預(yù)制件市場(chǎng)調(diào)查研究報(bào)告
- 《學(xué)前教育法》是學(xué)前教育工作者的新征程
- 節(jié)能減排知識(shí)培訓(xùn)
- 心肺復(fù)蘇術(shù)課件2024新版
- 安全環(huán)保職業(yè)健康法律法規(guī)清單2024年
- 北師大版數(shù)學(xué)一年級(jí)上冊(cè)期中考試試題
- 治本攻堅(jiān)三年行動(dòng)
- 行政復(fù)議法-形考作業(yè)2-國(guó)開(kāi)(ZJ)-參考資料
- web前端開(kāi)發(fā)工程師職業(yè)生涯規(guī)劃
評(píng)論
0/150
提交評(píng)論