四川廣安友誼中學2023屆中考聯(lián)考數(shù)學試題含解析_第1頁
四川廣安友誼中學2023屆中考聯(lián)考數(shù)學試題含解析_第2頁
四川廣安友誼中學2023屆中考聯(lián)考數(shù)學試題含解析_第3頁
四川廣安友誼中學2023屆中考聯(lián)考數(shù)學試題含解析_第4頁
四川廣安友誼中學2023屆中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(

).A. B.- C.- D.2.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.33.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.4.如圖,是的直徑,是的弦,連接,,,則與的數(shù)量關系為()A. B.C. D.5.如圖,△ABC是⊙O的內接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°6.小王拋一枚質地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.7.某種微生物半徑約為0.00000637米,該數(shù)字用科學記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣78.如果t>0,那么a+t與a的大小關系是()A.a(chǎn)+t>aB.a(chǎn)+t<aC.a(chǎn)+t≥aD.不能確定9.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<410.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④11.下列各組數(shù)中,互為相反數(shù)的是()A.﹣2與2 B.2與2 C.3與 D.3與312.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.14.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.15.一個扇形的圓心角為120°,弧長為2π米,則此扇形的半徑是_____米.16.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.17.在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現(xiàn)將印有圖案的一面朝下,混合后從中隨機抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為_____.18.拋物線y=(x+1)2-2的頂點坐標是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.20.(6分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為xm設垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關系式;若菜園面積為384m2,求x的值;求菜園的最大面積.21.(6分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.22.(8分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)23.(8分)某社區(qū)活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區(qū)居民免費借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關系式;若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.24.(10分)如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達式;(2)設直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側的一點,若,且與的面積相等,求點的坐標;(3)若在軸上有且只有一點,使,求的值.25.(10分)霧霾天氣嚴重影響市民的生活質量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調查了所在城市部分市民,并對調查結果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據(jù)統(tǒng)計圖表回答下列問題:本次被調查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數(shù);若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).26.(12分)如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側,且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.27.(12分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當AC=2,CD=1時,求⊙O的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:根據(jù)根與系數(shù)的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.2、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設a=x,則c=3x,b==2x.即tanA==.故選B.【點睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關鍵.3、B【解析】

陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.4、C【解析】

首先根據(jù)圓周角定理可知∠B=∠C,再根據(jù)直徑所得的圓周角是直角可得∠ADB=90°,然后根據(jù)三角形的內角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結果.【詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【點睛】本題考查了圓周角定理及其逆定理和三角形的內角和定理,掌握相關知識進行轉化是解題的關鍵.5、B【解析】

由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關鍵.6、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.7、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000637的小數(shù)點向右移動6位得到6.37所以0.00000637用科學記數(shù)法表示為6.37×10﹣6,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、A【解析】試題分析:根據(jù)不等式的基本性質即可得到結果.t>0,∴a+t>a,故選A.考點:本題考查的是不等式的基本性質點評:解答本題的關鍵是熟練掌握不等式的基本性質1:不等式兩邊同時加或減去同一個整式,不等號方向不變.9、B【解析】

根據(jù)第四象限內點的橫坐標是正數(shù),縱坐標是負數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點睛】本題考查各象限內點的坐標的符號特征以及解不等式,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點的坐標是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤。∵二次函數(shù)y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。11、A【解析】

根據(jù)只有符號不同的兩數(shù)互為相反數(shù),可直接判斷.【詳解】-2與2互為相反數(shù),故正確;2與2相等,符號相同,故不是相反數(shù);3與互為倒數(shù),故不正確;3與3相同,故不是相反數(shù).故選:A.【點睛】此題主要考查了相反數(shù),關鍵是觀察特點是否只有符號不同,比較簡單.12、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、22.5°【解析】

四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質;等腰三角形的性質.14、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】

此題主要考查了菱形的性質,勾股定理,關鍵是要熟記定理的內容并會應用.15、1【解析】

根據(jù)弧長公式l=nπr180,可得r=【詳解】解:∵l=nπr∴r=180lnπ=故答案為:1.【點睛】考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=nπr180(弧長為l,圓心角度數(shù)為n,圓的半徑為16、(5,﹣8)【解析】

各對應點之間的關系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規(guī)律可知:各對應點之間的關系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)【點睛】此題主要考查了坐標與圖形的變化-平移,解決本題的關鍵是根據(jù)已知對應點找到各對應點之間的變化規(guī)律.17、【解析】

用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖展示所有12種等可能的結果數(shù),再找出抽到卡片上印有圖案都是軸對稱圖形的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖:共有12種等可能的結果數(shù),其中抽到卡片上印有圖案都是軸對稱圖形的結果數(shù)為6,所以抽到卡片上印有圖案都是軸對稱圖形的概率.故答案為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.也考查了軸對稱圖形.18、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數(shù)的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質、相似三角形的判定與性質、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質、勾股定理是關鍵.20、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關于x的函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.【點睛】本題主要考查二次函數(shù)和一元二次方程的應用,解題的關鍵是將實際問題轉化為一元二次方程和二次函數(shù)的問題.21、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.22、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.23、解:(1)yA=27x+270,yB=30x+240;(2)當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算;(3)先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【解析】

(1)根據(jù)購買費用=單價×數(shù)量建立關系就可以表示出yA、yB的解析式;(2)分三種情況進行討論,當yA=yB時,當yA>yB時,當yA<yB時,分別求出購買劃算的方案;(3)分兩種情況進行討論計算求出需要的費用,再進行比較就可以求出結論.【詳解】解:(1)由題意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)當yA=yB時,27x+270=30x+240,得x=10;當yA>yB時,27x+270>30x+240,得x<10;當yA<yB時,27x+270<30x+240,得x>10∴當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算.(3)由題意知x=15,15>10,∴選擇A超市,yA=27×15+270=675(元),先選擇B超市購買10副羽毛球拍,送20個羽毛球,然后在A超市購買剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要費用10×30+351=651(元).∵651元<675元,∴最佳方案是先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【點睛】本題考查一次函數(shù)的應用,根據(jù)題意確列出函數(shù)關系式是本題的解題關鍵.24、(1).;(2)點坐標為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關于對稱.,,.,,.綜上所述,點坐標為;.(3)由題意可得:.,,,即.,,.設的中點為,點有且只有一個,以為直徑的圓與軸只有一個交點,且為切點.軸,為的中點,.,,,,即,.,.點睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關系列方程解決問題,會分類討論各種情況是解題的關鍵.25、(1)200人,;(2)見解析,;(3)75萬人.【解析】

(1)用A類的人數(shù)除以所占的百分比求出被調查的市民數(shù),再用B類的人數(shù)除以總人數(shù)得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數(shù),從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應的圓心角的度數(shù);(3)用該市的總人數(shù)乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調查的市民共有:(人),∴,;(2)組的人數(shù)是(人)、組的人數(shù)是(人),∴;補全的條形統(tǒng)計圖如下圖所示:扇形區(qū)域所對應的圓心角的度數(shù)為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論