陜西省西安愛(ài)知初級(jí)中學(xué)2023屆中考數(shù)學(xué)全真模擬試卷含解析_第1頁(yè)
陜西省西安愛(ài)知初級(jí)中學(xué)2023屆中考數(shù)學(xué)全真模擬試卷含解析_第2頁(yè)
陜西省西安愛(ài)知初級(jí)中學(xué)2023屆中考數(shù)學(xué)全真模擬試卷含解析_第3頁(yè)
陜西省西安愛(ài)知初級(jí)中學(xué)2023屆中考數(shù)學(xué)全真模擬試卷含解析_第4頁(yè)
陜西省西安愛(ài)知初級(jí)中學(xué)2023屆中考數(shù)學(xué)全真模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,A,C,E,G四點(diǎn)在同一直線(xiàn)上,分別以線(xiàn)段AC,CE,EG為邊在A(yíng)G同側(cè)作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點(diǎn)H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.2.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動(dòng)點(diǎn)(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形3.如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是()A.10π B.15π C.20π D.30π4.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠35.甲、乙、丙、丁四名射擊運(yùn)動(dòng)員進(jìn)行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績(jī)?nèi)鐖D所示,丙、丁二人的成績(jī)?nèi)绫硭荆蕴幻\(yùn)動(dòng)員,從平均數(shù)和方差兩個(gè)因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁6.已知反比例函數(shù)y=﹣,當(dāng)﹣3<x<﹣2時(shí),y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣27.如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°8.下列命題中錯(cuò)誤的有()個(gè)(1)等腰三角形的兩個(gè)底角相等(2)對(duì)角線(xiàn)相等且互相垂直的四邊形是正方形(3)對(duì)角線(xiàn)相等的四邊形為矩形(4)圓的切線(xiàn)垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.49.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣(mài)出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元10.下列計(jì)算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.因式分解:9a2﹣12a+4=______.12.以下兩題任選一題作答:(1).下圖是某商場(chǎng)一樓二樓之間的手扶電梯示意圖,其中AB、CD分別表示一樓、二樓地面的水平,∠ABC=150°,BC的長(zhǎng)是8m,則乘電梯次點(diǎn)B到點(diǎn)C上升的高度h是_____m.(2).一個(gè)多邊形的每一個(gè)內(nèi)角都是與它相鄰?fù)饨堑?倍,則多邊形是_____邊形.13.如圖,已知拋物線(xiàn)與坐標(biāo)軸分別交于A(yíng),B,C三點(diǎn),在拋物線(xiàn)上找到一點(diǎn)D,使得∠DCB=∠ACO,則D點(diǎn)坐標(biāo)為_(kāi)___________________.14.將一個(gè)含45°角的三角板,如圖擺放在平面直角坐標(biāo)系中,將其繞點(diǎn)順時(shí)針旋轉(zhuǎn)75°,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在軸上,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為_(kāi)___________.15.因式分解:________.16.在一個(gè)不透明的袋子中裝有除顏色外其他均相同的3個(gè)紅球和2個(gè)白球,從中任意摸出一個(gè)球,則摸出白球的概率是_____.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點(diǎn)D、E,得到DE弧.求證:AB為⊙C的切線(xiàn).求圖中陰影部分的面積.18.(8分)已知:如圖,梯形ABCD,DC∥AB,對(duì)角線(xiàn)AC平分∠BCD,點(diǎn)E在邊CB的延長(zhǎng)線(xiàn)上,EA⊥AC,垂足為點(diǎn)A.(1)求證:B是EC的中點(diǎn);(2)分別延長(zhǎng)CD、EA相交于點(diǎn)F,若AC2=DC?EC,求證:AD:AF=AC:FC.19.(8分)已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過(guò)點(diǎn)H作CD的垂線(xiàn),交BD于點(diǎn)E,連接AE.(1)如圖1,線(xiàn)段EH、CH、AE之間的數(shù)量關(guān)系是;(2)如圖2,將△DHE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線(xiàn)上時(shí),求證:AE+EH=CH.20.(8分)先化簡(jiǎn),再求值:(x﹣2﹣)÷,其中x=.21.(8分)我國(guó)古代《算法統(tǒng)宗》里有這樣一首詩(shī):我問(wèn)開(kāi)店李三公,眾客都來(lái)到店中,一房七客多七客,一房九客一房空.詩(shī)中后兩句的意思是:如果每間客房住7人,那么有7人無(wú)房可??;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?22.(10分)某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績(jī)記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績(jī),并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.征文比賽成績(jī)頻數(shù)分布表分?jǐn)?shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計(jì)1請(qǐng)根據(jù)以上信息,解決下列問(wèn)題:(1)征文比賽成績(jī)頻數(shù)分布表中c的值是;(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).23.(12分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點(diǎn)O,交BC于點(diǎn)E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線(xiàn),則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.24.有A,B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和1.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)腂布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(x,y).(1)用列表或畫(huà)樹(shù)狀圖的方法寫(xiě)出點(diǎn)Q的所有可能坐標(biāo);(1)求點(diǎn)Q落在直線(xiàn)y=﹣x﹣1上的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)等邊三角形的性質(zhì)得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內(nèi)角和得到∠AFG=90°,根據(jù)相似三角形的性質(zhì)得到==,==,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積的計(jì)算,熟練掌握相似三角形的性質(zhì)和判定是解題的關(guān)鍵.2、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯(cuò)誤.

故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題.3、B【解析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線(xiàn)長(zhǎng)為5,∵圓錐的底面周長(zhǎng)等于圓錐的側(cè)面展開(kāi)扇形的弧長(zhǎng),∴圓錐的底面周長(zhǎng)=圓錐的側(cè)面展開(kāi)扇形的弧長(zhǎng)=2πr=2π×3=6π,∴圓錐的側(cè)面積=lr=×6π×5=15π,故選B4、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.5、D【解析】

求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個(gè)人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰?。蔬xD.【點(diǎn)睛】本題考查方差、平均數(shù)、折線(xiàn)圖等知識(shí),解題的關(guān)鍵是記住平均數(shù)、方差的公式.6、C【解析】分析:由題意易得當(dāng)﹣3<x<﹣2時(shí),函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計(jì)算出當(dāng)x=-3和x=-2時(shí)對(duì)應(yīng)的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當(dāng)﹣3<x<﹣2時(shí)函數(shù)的圖象位于第二象限內(nèi),且y隨x的增大而增大,∵當(dāng)x=﹣3時(shí),y=2,當(dāng)x=﹣2時(shí),y=3,∴當(dāng)﹣3<x<﹣2時(shí),2<y<3,故選C.點(diǎn)睛:熟悉“反比例函數(shù)的圖象和性質(zhì)”是正確解答本題的關(guān)鍵.7、B【解析】

解:如圖,由兩直線(xiàn)平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點(diǎn)睛】本題考查平行線(xiàn)的性質(zhì),掌握兩直線(xiàn)平行,同位角相等是解題關(guān)鍵.8、D【解析】分析:根據(jù)等腰三角形的性質(zhì)、正方形的判定定理、矩形的判定定理、切線(xiàn)的性質(zhì)、垂徑定理判斷即可.詳解:等腰三角形的兩個(gè)底角相等,(1)正確;對(duì)角線(xiàn)相等、互相平分且互相垂直的四邊形是正方形,(2)錯(cuò)誤;對(duì)角線(xiàn)相等的平行四邊形為矩形,(3)錯(cuò)誤;圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑,(4)錯(cuò)誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯(cuò)誤.故選D.點(diǎn)睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.9、B【解析】試題分析:通過(guò)理解題意可知本題的等量關(guān)系,即每件作服裝仍可獲利=按成本價(jià)提高40%后標(biāo)價(jià),又以8折賣(mài)出,根據(jù)這兩個(gè)等量關(guān)系,可列出方程,再求解.解:設(shè)這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個(gè)方程得:x=125則這種服裝每件的成本是125元.故選B.考點(diǎn):一元一次方程的應(yīng)用.10、D【解析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(3a﹣1)1【解析】

直接利用完全平方公式分解因式得出答案.【詳解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【點(diǎn)睛】考查了公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.12、48【解析】

(1)先求出斜邊的坡角為30°,再利用含30°的直角三角形即可求解;(2)設(shè)這個(gè)多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為故可列出方程求解.【詳解】(1)∵∠ABC=150°,∴斜面BC的坡角為30°,∴h==4m(2)設(shè)這個(gè)多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為依題意得解得n=8故為八邊形.【點(diǎn)睛】此題主要考查含30°的直角三角形與多邊形的內(nèi)角和計(jì)算,解題的關(guān)鍵是熟知含30°的直角三角形的性質(zhì)與多邊形的內(nèi)角和公式.13、(,),(-4,-5)【解析】

求出點(diǎn)A、B、C的坐標(biāo),當(dāng)D在x軸下方時(shí),設(shè)直線(xiàn)CD與x軸交于點(diǎn)E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標(biāo),再求出CE的直線(xiàn)解析式,聯(lián)立拋物線(xiàn)即可求出D的坐標(biāo),再由對(duì)稱(chēng)性即可求出D在x軸上方時(shí)的坐標(biāo).【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當(dāng)點(diǎn)D在x軸下方時(shí),∴設(shè)直線(xiàn)CD與x軸交于點(diǎn)E,過(guò)點(diǎn)E作EG⊥CB于點(diǎn)G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設(shè)EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設(shè)CE的解析式為y=mx+n,交拋物線(xiàn)于點(diǎn)D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線(xiàn)CE的解析式為:y=2x+3,聯(lián)立解得:x=-4或x=0,∴D2的坐標(biāo)為(-4,-5)設(shè)點(diǎn)E關(guān)于BC的對(duì)稱(chēng)點(diǎn)為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設(shè)CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線(xiàn)CF的解析式為:y=x+3,聯(lián)立解得:x=0或x=-∴D1的坐標(biāo)為(-,)故答案為(-,)或(-4,-5)【點(diǎn)睛】本題考查二次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是根據(jù)對(duì)稱(chēng)性求出相關(guān)點(diǎn)的坐標(biāo),利用直線(xiàn)解析式以及拋物線(xiàn)的解析式即可求出點(diǎn)D的坐標(biāo).14、【解析】

先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標(biāo).【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點(diǎn)C的坐標(biāo)為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點(diǎn)的坐標(biāo)為【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)與圖形變換,同時(shí)也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線(xiàn)段的長(zhǎng)度,即可解決問(wèn)題.15、n(m+2)(m﹣2)【解析】

先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點(diǎn)睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關(guān)鍵16、【解析】

根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻拷猓骸咴谝粋€(gè)不透明的袋子中裝有除顏色外其他均相同的3個(gè)紅球和2個(gè)白球,∴從中任意摸出一個(gè)球,則摸出白球的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法與運(yùn)用,一般方法為:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=三、解答題(共8題,共72分)17、(1)證明見(jiàn)解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線(xiàn)的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過(guò)C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線(xiàn);(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點(diǎn)睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線(xiàn)的性質(zhì)和判定等知識(shí)點(diǎn),能求出CF的長(zhǎng)是解答此題的關(guān)鍵.18、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【解析】

(1)根據(jù)平行線(xiàn)的性質(zhì)結(jié)合角平分線(xiàn)的性質(zhì)可得出∠BCA=∠BAC,進(jìn)而可得出BA=BC,根據(jù)等角的余角相等結(jié)合等角對(duì)等邊,即可得出AB=BE,進(jìn)而可得出BE=BA=BC,此題得證;(2)根據(jù)AC2=DC?EC結(jié)合∠ACD=∠ECA可得出△ACD∽△ECA,根據(jù)相似三角形的性質(zhì)可得出∠ADC=∠EAC=90°,進(jìn)而可得出∠FDA=∠FAC=90°,結(jié)合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質(zhì)可證出AD:AF=AC:FC.【詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點(diǎn);(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、角平分線(xiàn)的性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用等角對(duì)等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.19、(1)EH2+CH2=AE2;(2)見(jiàn)解析.【解析】分析:(1)如圖1,過(guò)E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過(guò)△DME≌△DHE,根據(jù)全等三角形的性質(zhì)得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結(jié)論;

(2)如圖2,根據(jù)菱形的性質(zhì)得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質(zhì)得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.詳解:(1)EH2+CH2=AE2,如圖1,過(guò)E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點(diǎn)睛:考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線(xiàn).20、【解析】

根據(jù)分式的運(yùn)算法則即可求出答案.【詳解】原式,,.當(dāng)時(shí),原式【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是分式的化簡(jiǎn)求值,解題關(guān)鍵是化簡(jiǎn)成最簡(jiǎn)再代入計(jì)算.21、客房8間,房客63人【解析】

設(shè)該店有間客房,以人數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論