版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SegmentationandBoundaryDetectionUsingMultiscale利用多尺分割和邊界檢測(cè)第1頁(yè)/共64頁(yè)LocalUncertainty第2頁(yè)/共64頁(yè)GlobalCertainty第3頁(yè)/共64頁(yè)LocalUncertainty第4頁(yè)/共64頁(yè)GlobalCertainty第5頁(yè)/共64頁(yè)CoarseMeasurementsforTexture第6頁(yè)/共64頁(yè)AChickenandEggProblemProblem:CoarsemeasurementsmixneighboringstatisticsSolution:supportofmeasurementsisdeterminedasthesegmentationprocessproceeds第7頁(yè)/共64頁(yè)
Normalized-cutsmeasureingraphsCompletehierarchyinlineartimeUsemultiscalemeasuresofintensity,texture,shape,andboundaryintegritySegmentationbyWeightedAggregation第8頁(yè)/共64頁(yè)Normalized-cutsmeasureingraphs
CompletehierarchyinlineartimeUsemultiscalemeasuresofintensity,texture,shape,andboundaryintegritySegmentationbyWeightedAggregation第9頁(yè)/共64頁(yè)SegmentationbyWeightedAggregationNormalized-cutsmeasureingraphsCompletehierarchyinlineartime
Usemultiscalemeasuresofintensity,texture,shapeandboundaryintegrity第10頁(yè)/共64頁(yè)ThePixelGraphCouplingsReflectintensitysimilarityLowcontrast–strongcouplingHighcontrast–weakcoupling第11頁(yè)/共64頁(yè)HierarchicalGraph第12頁(yè)/共64頁(yè)Hierarchy
inSWA第13頁(yè)/共64頁(yè)Normalized-CutMeasure第14頁(yè)/共64頁(yè)Normalized-CutMeasure第15頁(yè)/共64頁(yè)Normalized-CutMeasure第16頁(yè)/共64頁(yè)Normalized-CutMeasureMinimize:第17頁(yè)/共64頁(yè)Normalized-CutMeasureHigh-energycutMinimize:第18頁(yè)/共64頁(yè)Normalized-CutMeasureLow-energycutMinimize:第19頁(yè)/共64頁(yè)RecursiveCoarsening第20頁(yè)/共64頁(yè)RecursiveCoarseningRepresentativesubset第21頁(yè)/共64頁(yè)RecursiveCoarseningForasalientsegment:,sparseinterpolationmatrix第22頁(yè)/共64頁(yè)WeightedAggregationaggregateaggregate第23頁(yè)/共64頁(yè)SegmentDetection第24頁(yè)/共64頁(yè)SWALinearin#ofpoints(afewdozenoperationsperpoint)DetectsthesalientsegmentsHierarchicalstructure第25頁(yè)/共64頁(yè)Coarse-ScaleMeasurementsAverageintensitiesofaggregatesMultiscaleintensity-variancesofaggregatesMultiscaleshape-momentsofaggregatesBoundaryalignmentbetweenaggregates第26頁(yè)/共64頁(yè)Adaptivevs.RigidMeasurementsAveragingOuralgorithm-SWAGeometricOriginal第27頁(yè)/共64頁(yè)Ouralgorithm-SWAAdaptivevs.RigidMeasurementsInterpolationGeometricOriginal第28頁(yè)/共64頁(yè)RecursiveMeasurements:Intensityaggregateintensityofpixeli
averageintensityofaggregate第29頁(yè)/共64頁(yè)UseAveragestoModifytheGraph第30頁(yè)/共64頁(yè)UseAveragestoModifytheGraph第31頁(yè)/共64頁(yè)TextureExamples第32頁(yè)/共64頁(yè)IsotropicandOrientedFiltersTextonsbyK-MeansMaliketalIJCV2001Abrieftutorial第33頁(yè)/共64頁(yè)IsotropicTextureinSWAIntensityVarianceIsotropicTextureofaggregate–averageofvariancesinallscales第34頁(yè)/共64頁(yè)IsotropicTextureinSWAIntensityVarianceIsotropicTextureofaggregate–averageofvariancesinallscales第35頁(yè)/共64頁(yè)IsotropicTextureinSWAIntensityVarianceIsotropicTextureofaggregate–averageofvariancesinallscales第36頁(yè)/共64頁(yè)OrientedTextureinSWAShapeMomentsOrientedTextureofaggregate–orientation,widthandlengthinallscalescenterofmasswidthlengthorientationwithMeiravGalun第37頁(yè)/共64頁(yè)Gestalt–PerceptualGroupingAbriefTutorialSharon,Brandt,BasriPAMI2000:ShashuaandUllmanICCV1988:Groupcurvesby:ProximityCo-linearity第38頁(yè)/共64頁(yè)BoundaryIntegrityinSWA第39頁(yè)/共64頁(yè)SharpentheAggregatesTop-downSharpening:
ExpandcoreSharpenboundaries第40頁(yè)/共64頁(yè)Hierarchy
inSWA第41頁(yè)/共64頁(yè)ExperimentsOurSWAalgorithm(CVPR’00+CVPR’01)
run-time:5-10seconds.Normalizedcuts(ShiandMalik,PAMI’00;Maliketal.,IJCV’01)
run-time:about10-15minutes.
SoftwarecourtesyofDoronTal,UCBerkeley.imagesonapentiumIII1000MHzPC:第42頁(yè)/共64頁(yè)IsotropicTexture-HorseIOurAlgorithm(SWA)NormalizedCuts第43頁(yè)/共64頁(yè)IsotropicTexture-HorseIIOurAlgorithm(SWA)NormalizedCuts第44頁(yè)/共64頁(yè)IsotropicTexture-TigerNormalizedCutsOurAlgorithm(SWA)第45頁(yè)/共64頁(yè)IsotropicTexture-ButterflyOurAlgorithm(SWA)NormalizedCuts第46頁(yè)/共64頁(yè)IsotropicTexture-LeopardOurAlgorithm(SWA)第47頁(yè)/共64頁(yè)IsotropicTexture-DalmatianDogOurAlgorithm(SWA)第48頁(yè)/共64頁(yè)IsotropicTexture-SquirrelOurAlgorithm(SWA)NormalizedCuts第49頁(yè)/共64頁(yè)FullTexture-SquirrelOurAlgorithm(SWA)NormalizedCutswithMeiravGalun第50頁(yè)/共64頁(yè)FullTexture-CompositionOurAlgorithm(SWA)withMeiravGalun第51頁(yè)/共64頁(yè)FullTexture–LionCubOurAlgorithm(SWA)withMeiravGalun第52頁(yè)/共64頁(yè)FullTexture–PolarBearOurAlgorithm(SWA)withMeiravGalun第53頁(yè)/共64頁(yè)FullTexture–PenguinOurAlgorithm(SWA)withMeiravGalun第54頁(yè)/共64頁(yè)FullTexture–LeopardOurAlgorithm(SWA)withMeiravGalun第55頁(yè)/共64頁(yè)FullTexture-ZebraOurAlgorithm(SWA)withMeiravGalun第56頁(yè)/共64頁(yè)SegmentationbyWeightedAggregationEfficientapproximationtoNcut-likemeasuresRecursivecomputationofmultiscalemeasurementsNoveladaptivepyramidrepresentingtheimage第57頁(yè)/共64頁(yè)MatchingExperiment(ChenBrestel)第58頁(yè)/共64頁(yè)MatchingExperiment(ChenBrestel)第59頁(yè)/共64頁(yè)MatchingExperiment(ChenBrestel)第60頁(yè)/共64頁(yè)Experiments–ClusteringSilho
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專注教育服務(wù)合同
- 改正錯(cuò)誤的決心書(shū)示例
- 企業(yè)間借款合同格式模板
- 房屋買(mǎi)賣(mài)合同字體的頁(yè)眉文字對(duì)齊
- 公交公司服務(wù)原則
- 網(wǎng)吧電腦系統(tǒng)采購(gòu)協(xié)議
- 債權(quán)轉(zhuǎn)讓協(xié)議模板
- 照明工程分包合同
- 自然人圖書(shū)庫(kù)存采購(gòu)合同
- 培訓(xùn)班合作漁業(yè)合同
- 業(yè)主授權(quán)租戶安裝充電樁委托書(shū)
- 失眠之中醫(yī)問(wèn)診單
- MOOC 線性代數(shù)-同濟(jì)大學(xué) 中國(guó)大學(xué)慕課答案
- 橋式起重機(jī)定期檢查記錄表
- MOOC 警察禮儀-江蘇警官學(xué)院 中國(guó)大學(xué)慕課答案
- 2023-2024學(xué)年度九上圓與無(wú)刻度直尺作圖專題研究(劉培松)
- 2024年廣東省2024屆高三二模英語(yǔ)試卷(含標(biāo)準(zhǔn)答案)
- 2023年-2024年醫(yī)療器械知識(shí)測(cè)試題與答案(含A.B卷)
- 汽車(chē)制造業(yè)的柔性生產(chǎn)與敏捷制造
- 2024年制鞋工專業(yè)知識(shí)考試(重點(diǎn))題庫(kù)(含答案)
- 2023年政府采購(gòu)評(píng)審專家入庫(kù)考試模擬真題一套(含正確答案)
評(píng)論
0/150
提交評(píng)論