版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第11章三角形
教材內(nèi)容
本章主要內(nèi)容有三角形的有關(guān)線段、角,多邊形及內(nèi)角和,鑲嵌等。
三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。教材通過實(shí)
驗(yàn)讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于180°的基礎(chǔ)上,進(jìn)行推理論證,從而得出三角
形外角的性質(zhì)。接著由推廣三角形的有關(guān)概念,介紹了多邊形的有關(guān)概念,利用三角形的有關(guān)性質(zhì)研究了
多邊形的內(nèi)角和、外角和公式。這些知識(shí)加深了學(xué)生對(duì)三角形的認(rèn)識(shí),既是學(xué)習(xí)特殊三角形的基礎(chǔ),也是
研究其它圖形的基礎(chǔ)。最后結(jié)合實(shí)例研究了鑲嵌的有關(guān)問題,體現(xiàn)了多邊形內(nèi)角和公式在實(shí)際生活中的應(yīng)
用.
教學(xué)目標(biāo)
〔知識(shí)與技能〕
1、理解三角形及有關(guān)概念,會(huì)畫任意三角形的高、中線、角平分線;2、了解三角形的穩(wěn)定性,理解
三角形兩邊的和大于第三邊,會(huì)根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形;3、會(huì)證明三角形內(nèi)角和
等于180°,了解三角形外角的性質(zhì)。4、了解多邊形的有關(guān)概念,會(huì)運(yùn)用多邊形的內(nèi)角和與外角和公式解
決問題。5、理解平面鑲嵌,知道任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面,并能運(yùn)用它們進(jìn)行
簡單的平面鑲嵌設(shè)計(jì)。
〔過程與方法〕
1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;
2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理
和進(jìn)行簡單推理的能力。
〔情感、態(tài)度與價(jià)值觀〕
1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡單的實(shí)
際問題,增強(qiáng)應(yīng)用意識(shí);3、使學(xué)生進(jìn)一步形成數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀
點(diǎn)。
重點(diǎn)難點(diǎn)
三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點(diǎn);三角形內(nèi)角和等于180°的證
明,根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形及簡單的平面鑲嵌設(shè)計(jì)是難點(diǎn)。
課時(shí)分配
11.1與三角形有關(guān)的線段...............................2課時(shí)
11.2與三角形有關(guān)的角.................................2課時(shí)
11.3多邊形及其內(nèi)角和.................................2課時(shí)
本章小結(jié).............................................2課時(shí)
第1頁共138頁
11.1.1三角形的邊
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1了解三角形的意義,認(rèn)識(shí)三角形的邊、內(nèi)角、頂點(diǎn),能用符號(hào)語言表示三角形;
2理解三角形三邊不等的關(guān)系,會(huì)判斷三條線段能否構(gòu)成一個(gè)三角形,并能運(yùn)用它解決有關(guān)的問題.
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形的有關(guān)概念和符號(hào)表示,三角形三邊間的不等關(guān)系是重點(diǎn);用三角形三邊不等關(guān)
系判定三條線段可否組成三角形是難點(diǎn)。
[教學(xué)過程]
一、情景導(dǎo)入
三角形是一種最常見的幾何圖形,[投影1-6]如古埃及金字塔,香港中銀大廈,交通標(biāo)志,等等,處
處都有三角形的形象。
那么什么叫做三角形呢?
二、三角形及有關(guān)概念
不在一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。
注意:三條線段必須①不在一條直線上,②首尾順次相接。
組成三角形的線段叫做三角形的邊,相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱角,相鄰兩邊的公
共端點(diǎn)是三角形的頂點(diǎn)。
三角形ABC用符號(hào)表示為△ABC。三角形ABC的頂點(diǎn)C所對(duì)的邊AB可用c表示,頂點(diǎn)B所對(duì)的邊
AC可用b表示,頂點(diǎn)A所對(duì)的邊BC可用a表示.
三、三角形三邊的不等關(guān)系
探究:[投影7]任意畫一個(gè)△ABC,假設(shè)有一只小蟲要從B點(diǎn)出發(fā),沿三角形的邊爬到C,它有幾種路線
可以選擇?各條路線的長一樣嗎?為什么?
有兩條路線:(1)從B-C,(2)從B-A-C;不一樣,AB+AOBC①;因?yàn)閮牲c(diǎn)之間線段最短.
同樣地有AC+BOAB②
AB+BOAC③
由式子①②③我們可以知道什么?
三角形的任意兩邊之和大于第三邊.
四、三角形的分類
我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三角形、鈍角三角
形統(tǒng)稱為斜三角形。
按角分類:
三角形J直角三角形
I斜三角形(銳角三角形
I鈍角三角形
第2頁共138頁
那么三角形按邊如何進(jìn)行分類呢?請(qǐng)你按“有幾條邊相等”將三角形分類。
三邊都相等的三角形叫做等邊三角形;
有兩條邊相等的三角形叫做等腰三角形;
三邊都不相等的三角形叫做不等邊三角形。
顯然,等邊三角形是特殊的等腰三角形。
按邊分類:
三角形f不等邊三角形
I等腰三角形I底和腰不等的等腰三角形
I等邊三角形
五、例題
例用一條長為18cm的細(xì)繩圍成一個(gè)等腰三角形。(1)如果腰長是底邊的2倍,那么各邊的長是多
少?(2)能圍成有一邊長為4cm的等腰三角形嗎?為什么?
分析:(1)等腰三角形三邊的長是多少?若設(shè)底邊長為xcm,則腰長是多少?(2)“邊長為4cm”是
什么意思?
解:(1)設(shè)底邊長為xcm,則腰長2xcm。
x+2x+2x=18
解得x=3.6
所以,三邊長分別為3.6cm,7.2cm,7.2cm.
(2)如果長為4cm的邊為底邊,設(shè)腰長為xcm,則
4+2x=18
解得x=7
如果長為4cm的邊為腰,設(shè)底邊長為xcm,則
2X4+x=18
解得x=10
因?yàn)?+4<10,出現(xiàn)兩邊的和小于第三邊的情況,所以不能圍成腰長是4cm的等腰三角形。
由以上討論可知,可以圍成底邊長是4cm的等腰三角形。
五、課堂練習(xí)
課本4真練習(xí)1、2題。
六、課堂小結(jié)
1、三角形及有關(guān)概念;
2、三角形的分類;
3、三角形三邊的不等關(guān)系及應(yīng)用。
作業(yè):
課本8直1、2、6;
教后記
第3頁共138頁
11.1.2三角形的高、中線與角平分線
(教學(xué)目標(biāo))
〔知識(shí)與技能〕
1、經(jīng)歷畫圖的過程,認(rèn)識(shí)三角形的高、中線與角平分線;
2、會(huì)畫三角形的高、中線與角平分線;3、了解三角形的三條高所在的直線,三條中線,三條角平分線
分別交于一點(diǎn).
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
(重點(diǎn)難點(diǎn))三角形的高、中線與角平分線是重點(diǎn);三角形的角平分線與角的平分線的區(qū)別,畫鈍角
三角形的高是難點(diǎn).
(教學(xué)過程)
一、導(dǎo)入新課A
我們已經(jīng)知道什么是三角形,也學(xué)過三角形的高。A
三角形的主要線段除高外,還有中線和角平分線值得我們\
二、三角形的高BDCBDC
請(qǐng)你在圖中畫出AABC的一條高并說說你畫法。
從4ABC的頂點(diǎn)A向它所對(duì)的邊BC所在的直線畫垂線,垂足為D,所得線段AD叫做4ABC的邊
BC上的高,表示為ADLBC于點(diǎn)D。
注意:高與垂線不同,高是線段,垂線是直線。
請(qǐng)你再畫出這個(gè)三角形AB、AC邊上的高,看看有什么發(fā)現(xiàn)?
三角形的三條高相交于一點(diǎn)。
如果aABC是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?
現(xiàn)在我們來畫鈍角三角形三邊上的高,如圖。
顯然,上面的結(jié)論成立。
請(qǐng)你畫一個(gè)直角三角形,再畫出它三邊上的高。
上面的結(jié)論還成立。
三、三角形的中線
如圖,我們把連結(jié)aABC的頂點(diǎn)A和它的對(duì)邊BC的中點(diǎn)D,所得線段AD叫做AABC的邊BC上
的中線,表示為BD=DC或BD=DC=1/2BC或2BD=2DC=BC.
請(qǐng)你在圖中畫出4ABC的另兩條邊上的中線,看看有什么發(fā)現(xiàn)?
三角的三條中線相交于一點(diǎn)。
如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫圖回答。
上面的結(jié)論還成立。
第4頁共138頁
四、三角形的角平分線
如圖,畫/A的平分線AD,交NA所對(duì)的邊BC于點(diǎn)D,所得線段AD叫做4ABC的角平分線,表示
為NBAD=NCAD或NBAD=NCAD=1/2ZBAC或2ZBAD=2ZCAD=NBAC。
思考:三角形的角平分線與角的平分線是一樣的嗎?
三角形的角平分線是線段,而角的平分線是射線,是不一樣的。A
請(qǐng)你在圖中再畫出另兩個(gè)角的平分線,看看有什么發(fā)現(xiàn)?
三角形三個(gè)角的平分線相交于一點(diǎn)。
如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫圖回答。4~
上面的結(jié)論還成立。
想一想:三角形的三條高、三條中線、三條角平分線的交點(diǎn)有什么不同?
三角形的三條中線的交點(diǎn)、三條角平分線的交點(diǎn)在三角形的內(nèi)部,而銳三角形的三條高的交點(diǎn)在三角
形的內(nèi)部,直角三角形三條高的交戰(zhàn)在角直角頂點(diǎn),鈍角三角形的三條高的交點(diǎn)在三角形的外部。
五、課堂練習(xí)
課本5真練習(xí)1、2題。
六、課堂小結(jié)
1、三角形的高、中線、角平分線的概念和畫法。
2、三角形的三條高、三條中線、三條角平分線及交點(diǎn)的位置規(guī)律。
七作業(yè):
課本8M3,4;
八、教后記
第5頁共138頁
11.1.3三角形的穩(wěn)定性
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1、知道三角形具有穩(wěn)定性,四邊形沒有穩(wěn)定性;2、了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形穩(wěn)定性及應(yīng)用。
[教學(xué)過程]
一、情景導(dǎo)入
蓋房子時(shí),在窗框未安裝之前,木工師傅常常先在窗框上斜釘一根木條,為什么
要這樣做呢?
二、三角形的穩(wěn)定性
〔實(shí)臉〕1、把三根木條用釘子釘成一個(gè)三角形木架,然后扭動(dòng)它,它的形狀會(huì)N
不會(huì)改變。
2、把四根木條用釘子釘成一個(gè)四邊形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?
會(huì)改變。
3、在四邊形的木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來,然后扭動(dòng)它,它的形狀會(huì)改變嗎?
不會(huì)改變。
從上面的實(shí)驗(yàn)中,你能得出什么結(jié)論?
三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性。
三、三角形穩(wěn)定性和四邊形不穩(wěn)定的應(yīng)用
三角形具有穩(wěn)定性固然好,四邊形不具有穩(wěn)定性也未必不好,它們?cè)谏a(chǎn)
和生活中都有廣泛的應(yīng)用。如:
鋼架橋、屋頂鋼架和起重機(jī)都是利用三角形的穩(wěn)定性,活動(dòng)掛架則是利用
四邊形的不穩(wěn)定性。
你還能舉出一些例子嗎?
四、課堂練習(xí)
1、下列圖形中具有穩(wěn)定性的是()
A正方形B長方形C直角三角形D平行四邊形
2、要使下列木架穩(wěn)定各至少需要多少根木棍?
第6頁共138頁
四邊形木架五邊形木架六邊形木架
3、課本7直練習(xí)。
五作業(yè):8W5;9直10題。
六、教后記
第7頁共138頁
11.2.1三角形的內(nèi)角
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
掌握三角形內(nèi)角和定理。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形內(nèi)角和定理是重點(diǎn);三角形內(nèi)角和定理的證明是難點(diǎn)。
[教學(xué)過程]
一、導(dǎo)入新課
我們?cè)谛W(xué)就知道三角形內(nèi)角和等于180°,這個(gè)結(jié)論是通過實(shí)驗(yàn)得到的,這個(gè)命題是不是真命題還需
要證明,怎樣證明呢?
二、三角形內(nèi)角和的證明
回顧我們小學(xué)做過的實(shí)驗(yàn),你是怎樣操作的?
把一個(gè)三角形的兩個(gè)角剪下拼在第三個(gè)角的頂點(diǎn)處,用量角器量出
/BCD的度數(shù),可得到NA+NB+NACB=180°。[投影1]
想一想,還可以怎樣拼?
①剪下/A,按圖(2)拼在一起,可得到/A+/B+NACB=180°。
圖2
②把NB和NC剪下按圖(3)拼在一起,可得到NA+NB+NACB=180°。
如果把上面移動(dòng)的角在圖上進(jìn)行轉(zhuǎn)移,由圖1你能想到證明三角形內(nèi)角和等于180”的方法嗎?
已知△ABC,求證:ZA+ZB+ZC=180°t,
證明一
過點(diǎn)C作CM〃AB,則/A=/ACM,ZB=ZDCM,
又ZACB+ZACM+ZDCM=180°
ZA+ZB+ZACB=180°o
第8頁共138頁
即:三角形的內(nèi)角和等于180,
由圖2、圖3你又能想到什么證明方法?請(qǐng)說說證明過程。
三、例題
例如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°
方向,從C島看A、B兩島的視角/ACB是多少度?
分析:怎樣能求出NACB的度數(shù)?
根據(jù)三角形內(nèi)角和定理,只需求出/CAB和/CBA的度數(shù)即可。
ZCAB等于多少度?怎樣求NCBA的度數(shù)?
解:ZCBA=ZBAD-ZCAD=80°-50=301)
VAD/7BEAZBAD+ZABE=180°
Z.ZABE=180-ZBAD=180°-80°=100°
ZABC=ZABE-ZEBC=1OOo-4O('=6Oo
/.ZACB=180-ZABC-ZCAB=180°-60°-30°=90°
答:從C島看AB兩島的視角/ACB=180°是90°。
四、課堂練習(xí)
課本13<1,2題。
五作業(yè):
16M1、3、4;
六、教后記
第9頁共138頁
11.2.2三角形的外角
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
理解三角形的外角;2、掌握三角形外角的性質(zhì),能利用三角形外角的性質(zhì)解決問題。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推
能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形的外角和三角形外角的性質(zhì)是重點(diǎn);理解三
形的外角是難點(diǎn)。
[教學(xué)過程]
一、導(dǎo)入新課18A
〔投影1〕如圖,Z\ABC的三個(gè)內(nèi)角是什么?它們有什么關(guān)系?/X3
是NA、NB、NC,它們的和是180%B
若延長BC至D,則NACD是什么角?這個(gè)角與AABC的三個(gè)內(nèi)角有什么關(guān)系?
二、三角形外角的概念
/ACD叫做AABC的外角。也就是,三角形一邊與另一邊的延長線組成的角,叫做三角形的外角。
想一想,三角形的外角共有幾個(gè)?
共有六個(gè)。
注意:每個(gè)頂點(diǎn)處有兩個(gè)外角,它們是對(duì)頂角。研究與三角形外角有關(guān)的問題時(shí),通常每個(gè)頂點(diǎn)處取
一個(gè)外角.
三、三角形外角的性質(zhì)
容易知道,三角形的外角NACD與相鄰的內(nèi)角NACB是鄰補(bǔ)角,那與另外兩個(gè)角有怎樣的數(shù)量關(guān)系
〔投影2〕如圖,這是我們證明三角形內(nèi)角和定理時(shí)畫的輔助線,你能就此圖說明/ACD與NA、
ZB的關(guān)系嗎?
:CE〃AB,.\ZA=Z1,ZB=Z2
又NACD=/l+/2
.".ZACD=ZA+ZB
你能用文字語言敘述這個(gè)結(jié)論嗎?
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和。
由加數(shù)與和的關(guān)系你還能知道什么?
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。
即ZACD>ZA,ZACD>ZB?
四、例題
〔投影3〕例如圖,Zl>/2、/3是三角形ABC的三個(gè)外角,它們的和是多少?
分析:Z1與NBAC、Z2與/ABC、Z3與NACB有什么關(guān)系?/BAC、ABC、ZACB有什么關(guān)系?
解:VZl+ZBAC=180°,Z2+ZABC=180°,Z3+ZACB=180°,
/.Zl+ZBAC+Z2+ZABC+Z3+ZACB=540°
又ZBAC+ZABC+ZACB=180°
.,.Zl+Z2+Z3=360°<,
第10頁共138頁
你能用語言敘述本例的結(jié)論嗎?
三角形外角的和等于360°。
五、課堂練習(xí)
課本15直練習(xí):
六、課堂小結(jié)
1、什么是三角形外角?
2、三角形的外角有哪些性質(zhì)?
七、作業(yè):
課本12M5、6;
八、教后記
第11頁共138頁
11.3.1多邊形
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1、了解多邊形及有關(guān)概念,理解正多邊形的概念.2、區(qū)別凸多邊形與凹多邊形.
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]多邊形及有關(guān)概念、正多邊形的概念是重點(diǎn);區(qū)別凸多邊形與凹多邊形是難點(diǎn)。
[教學(xué)過程]
一、情景導(dǎo)入
[投影1]看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?
二、多邊形及有關(guān)概念
這些圖形有什么特點(diǎn)?
由幾條線段組成;它們不在同一條直線上;首尾順次相接.
這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。
多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,一個(gè)多邊形由
幾條線段組成,就叫做幾邊形,三角形是最簡單的多邊形。
與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的NA、NB、NC、ZD,Z
E。多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如圖中的N1是五邊形ABCDE的一個(gè)外
角。[投影2]
連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.
四邊形有幾條對(duì)角線?五邊形有幾條對(duì)角線?畫圖看看。
你能猜想n邊形有多少條對(duì)角線嗎?說說你的想法。
n邊形有l(wèi)/2n(n-3)條對(duì)角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可以引n-3條對(duì)角線,n個(gè)頂點(diǎn)共引n(n
-3)條對(duì)角線,又由于連接任意兩個(gè)頂點(diǎn)的兩條對(duì)角線是相同的,所以,n邊形有l(wèi)/2n(n-3)條對(duì)角線。
三、凸多邊形和凹多邊形
[投影3]如圖,下面的兩個(gè)多邊形有什么不同?
第12頁共138頁
A
B,
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣
的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲?/p>
們畫BD所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。
注意:今后我們討論的多邊形指的都是凸多邊形.
四、正多邊形的概念
我們知道,等邊三角形、正方形的各個(gè)角都相等,各條邊都相等,像這樣各個(gè)角都相等,各條邊都相
等的多邊形叫做正多邊形。
[投影4]下面是正多邊形的一些例子。
正三角形正方形正五邊形正六邊杉
五、課堂練習(xí)
課本21^練習(xí)1、2。
3、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來說明
嗎?
六、課堂小結(jié)
1、多邊形及有關(guān)概念。
2、區(qū)別凸多邊形和凹多邊形。
3、正多邊形的概念。
4、n邊形對(duì)角線有l(wèi)/2n(n-3)條。
七、作業(yè):
課本24M1?
八、教后記
第13頁共138頁
11.3.2多邊形的內(nèi)角和
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1、了解多邊形的內(nèi)角、外角等概念;
2、2、能通過不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算.
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]多邊形的內(nèi)角和與多邊形的外角和公式是重點(diǎn);多邊形的內(nèi)角和定理的推導(dǎo)是難點(diǎn)。
[教學(xué)過程]
一、復(fù)習(xí)導(dǎo)入
我們已經(jīng)證明了三角形的內(nèi)角和為180°,在小學(xué)我們用量角器量過四邊形的內(nèi)角的度數(shù),知道四邊
形內(nèi)角的和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?
二、多邊形的內(nèi)角和
〔投影1〕如圖,從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將四邊形分成幾個(gè)三角形?那么
四邊形的內(nèi)角和等于多少度?
可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和=4人1?的內(nèi)角和+ZSBDC的
內(nèi)角和=2X180°=360°o
類似地,你能知道五邊形、六邊形……n邊形的內(nèi)角和是多少度嗎?
〔投影2〕觀察下面的圖形,填空:
五邊形六邊形
從五邊形一個(gè)頂點(diǎn)出發(fā)可以引對(duì)角線,它們將五邊形分成三角形,五邊形的內(nèi)角和等
于;
從六邊形一個(gè)頂點(diǎn)出發(fā)可以引對(duì)角線,它們將六邊形分成三角形,六邊形的內(nèi)角和等
于;
〔投影3〕從n邊形一個(gè)頂點(diǎn)出發(fā),可以引—對(duì)角線,它們將n邊形分成—三角形,n邊形的內(nèi)角
和等于。
n邊形的內(nèi)角和等于(n-2)?180°.
從上面的討論我們知道,求n邊形的內(nèi)角和可以將n邊形分成若干個(gè)三角形來求?,F(xiàn)在以五邊形為例,
你還有其它的分法嗎?
分法一〔投影3〕如圖1,在五邊形ABCDE內(nèi)任取一點(diǎn)0,連結(jié)0A、0B、OC、0D、0E,則得五個(gè)三
角形。
五邊形的內(nèi)角和為5X180°—2X1800=(5—2)X1800=540°。
第14頁共138頁
E
D
圖1圖2
分法二〔投影4〕如圖2,在邊AB上取一點(diǎn)0,連0E、0D、0C,則可以(5-1)個(gè)三角形。
,五邊形的內(nèi)角和為(5—1)X180°—180°=(5—2)X180°
如果把五邊形換成n邊形,用同樣的方法可以得到n邊形內(nèi)角和=(n-2)X180°.
三、例題
〔投影6〕例1如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系?
如圖,已知四邊形ABCD中,ZA+ZC=180°,求NB與/D的關(guān)系.
分析:NA、NB、NC、/D有什么關(guān)系?
解:VZA+ZB+ZC+ZD=(4-2)X18O0=360°
又NA+/C=180°]
.\ZB+ZD=360°-(ZA+ZC)=1800,'/
這就是說,如果四邊形一組對(duì)角互補(bǔ),那么另一組對(duì)角也互補(bǔ).J/'/
〔投影7〕例2如圖,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這'些外角
的和叫做六邊形的外角和.六邊形的外角和等于多少?
如圖,己知/I,Z2,Z3,Z4,N5,26分別為六邊形ABCDEF的外角,求N1+/2+N3+/4+/5+
N6的值.
分析:多邊形的一個(gè)外角同與它相鄰的內(nèi)角有什么關(guān)系?六邊形的內(nèi)角和是多少度?
解:VZ1+ZBAF=18O°Z2+ZABC=180°Z3+ZBAD=180°
Z4+ZCDE=180°Z5+ZDEF=180°Z6+ZEFA=180°
AZl+ZBAF+Z2+ZABC+Z3+ZBAD+Z4+ZCDE+Z5+ZDEF+Z6+
ZEFA=6X180°
XZ1+Z2+Z3+Z4+Z5+Z6=4X180°
AZBAF+ZABC+ZBAD+ZCDE+ZDEF+ZEFA=6X1800-4X180°=360°
這就是說,六邊形形的外角和為360。。
如果把六邊形換成n邊形可以得到同樣的結(jié)果:
n邊形的外角和等于360。。
對(duì)此,我們也可以這樣來理解。〔投影8〕如圖,從多邊形的一個(gè)頂點(diǎn)A出發(fā),沿多邊形各邊走過各頂
點(diǎn),再回到A點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一
周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360°.
四、課堂練習(xí)
課本24直1、2、3題。
五、課堂小結(jié)
第15頁共138頁
n邊形的內(nèi)角和是多少度?
n邊形的外角和是多少度?
六、作業(yè):
課本24W2、3;
七、教后記
本章小結(jié)
一、知識(shí)結(jié)構(gòu)
一高
與三角形有,小
一關(guān)的線段中關(guān)
-角平分線
三角形----三角形的內(nèi)角和一?多邊形的內(nèi)角和
II
-三角形的外角和?—多邊形的外角和
二、回顧與思考
1、什么是三角形?什么是多邊形?什么是正多邊形?
三角形是不是多邊形?
2、什么是三角形的高、中線、角平分線?什么是對(duì)角線?
三角形有對(duì)角線嗎?n邊形的的對(duì)角線有多少條?
3、三角形的三條高,三條中線,三條角平分線各有什么特點(diǎn)?
4、三角形的內(nèi)角和是多少?n邊形的內(nèi)角和是多少?
你能用三角形的內(nèi)角和說明n邊形的內(nèi)角和嗎?
5、三角形的外角和是多少?n邊形的外角和是多少?
你能說明為什么多邊形的外角和與邊數(shù)無關(guān)嗎?
6、怎樣才算是平面鑲嵌?平面鑲嵌的條件是什么?能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪些?
你能舉一個(gè)兒個(gè)多邊形進(jìn)行平面鑲嵌的例子嗎?
三、例題導(dǎo)引
例1如圖,在aABC中,ZA:ZB:ZC=3:4:5,BD、CE分別是邊AC、AB上的高,BD、CE相交于
點(diǎn)H,求NBHC的度數(shù)。
第16頁共138頁
例2如圖,把AABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),
探索NA與N1+N2有什么數(shù)量關(guān)系?并說明理由。
B
1E
A
2D
C
例3如圖所示,在aABC中,4ABC的內(nèi)角平分線與外角平分線交于點(diǎn)P,試說明/P=1/2NA.
四、鞏固練習(xí)
課本28—29直復(fù)習(xí)題7(第3題可不做).
五、教后記
第17頁共138頁
第十二章全等三角形
單元要點(diǎn)分析
教學(xué)內(nèi)容
本章的主要內(nèi)容是全等三角形.主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的方法,并學(xué)會(huì)
怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個(gè)小節(jié),第一節(jié)學(xué)習(xí)三角形全等的概念、性質(zhì);第二節(jié)學(xué)習(xí)
三角形全等的判定方法和直角三角形全等的特殊判定方法;第三節(jié)利用三角形全等證明角的平分線的性
質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明.
教材分析
教材力求創(chuàng)設(shè)現(xiàn)實(shí)、有趣的問題情境,使學(xué)生經(jīng)歷從現(xiàn)實(shí)活動(dòng)中抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容解決
實(shí)際問題的過程.在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點(diǎn)放在第一個(gè)條件上,通過“邊邊邊”條件
探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣正確地表達(dá)證明過程.學(xué)生開始學(xué)習(xí)三角
形判定定理時(shí)的困難在于定理的證明,而這些推理證明并不要求學(xué)生掌握.為了突出判定方法這條主渠道,
教材都作為基本事實(shí)提出來,在畫圖、實(shí)驗(yàn)中讓學(xué)生知道它們的正確性就可以了.在“角的平分線的性質(zhì)”
一節(jié)中的兩個(gè)互逆定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,
這將在“勾股定理”中介紹.
三維目標(biāo)
1.知識(shí)與技能
在探索全等三角形的性質(zhì)與判定中,提高認(rèn)知水平,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).
2.過程與方法
經(jīng)歷探索三角形全等的判定的,發(fā)展空間觀念和有條理的表達(dá)能力,掌握兩個(gè)三角形全等的判定并應(yīng)
用于實(shí)際之中.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的觀察、操作、想象、推理能力,感悟幾何學(xué)的內(nèi)涵.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式.
2.難點(diǎn):領(lǐng)會(huì)證明的分析思路,學(xué)會(huì)運(yùn)用綜合法證明的格式.
3.關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對(duì)定理的證明.
教學(xué)建議
1.注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過程.在教學(xué)中鼓勵(lì)學(xué)生觀察、操作、推
理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì).
第18頁共138頁
2.注重創(chuàng)設(shè)具有現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用.
3.注意直觀操作與說理的結(jié)合,逐步培養(yǎng)學(xué)生有條理的思考和表達(dá).
課時(shí)劃分
本單元共分成9課時(shí).
12.1全等三角形1課時(shí)
12.2三角形全等的性質(zhì)5課時(shí)
12.3角的平分線的性質(zhì)2課時(shí)
復(fù)習(xí)與交流1課時(shí)
第19頁共138頁
12.1全等三角形
教學(xué)內(nèi)容
本節(jié)課主要介紹全等三角形的概念和性質(zhì).
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.
2.過程與方法
經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.
2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.
3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)
角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.
教具準(zhǔn)備
四張大小一樣的紙片、直尺、剪刀.
教學(xué)方法
采用“直觀——感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).
教學(xué)過程
一、動(dòng)手操作,導(dǎo)入課題
1.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,思考得到的圖形有何特點(diǎn)?
2.重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,思考得到的圖形有何特點(diǎn)?
【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.
【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.
學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要
細(xì)心.
【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形
叫做全等形,用“且”表示.
概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.
第20頁共138頁
【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、
旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?
【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.
【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、
三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.
【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一
起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?
【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論:
1.任意放置時(shí),并不一定完全重合,只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.
2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.
3.完全重合說明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.
【教師活動(dòng)】根據(jù)學(xué)生交流的情況,給予補(bǔ)充和語言上的規(guī)范.
1.概念:把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),重合的邊叫做對(duì)應(yīng)邊,重合
的角叫做對(duì)應(yīng)角.
2.證兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,如果本圖11.1-24ABC
和ADBC全等,點(diǎn)A和點(diǎn)D,點(diǎn)B和點(diǎn)B,點(diǎn)C和點(diǎn)C是對(duì)應(yīng)頂點(diǎn),記作AABC絲ADBC.
【問題提出】課本圖11.1—1中,aABC絲ZXDEF,對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢?
【學(xué)生活動(dòng)】經(jīng)過觀察得到下面性質(zhì):
1.全等三角形對(duì)應(yīng)邊相等;
2.全等三角形對(duì)應(yīng)角相等.
二、隨堂練習(xí),鞏固深化
課本P37練習(xí).
【探研時(shí)空】
1.如圖1所示,4ACF空△DBE,/E=/F,若AD=20cm,BC=8cm,你能求出線段AB的長嗎?與同伴交
流.(AB=6)
第21頁共138頁
E
2.如圖2所示,AABC之△AEC,ZB=30",ZACB=85°,求出AAEC各內(nèi)角的度數(shù).(/AEC=30°,
ZEAC=65°,ZECA=85")
三、課堂總結(jié),發(fā)展?jié)撃?/p>
1.什么叫做全等三角形?
2.全等三角形具有哪些性質(zhì)?
四、布置作業(yè),專題突破
課本P43習(xí)題12.1第1,2,3,4題.
五、板書設(shè)計(jì)
把黑板分成左、中、右三部分,左邊板書本節(jié)課概念,中間部分板書“思考”中的問題,右邊部分板
書學(xué)生的練習(xí).
疑難解析
由于兩個(gè)三角形的位置關(guān)系不同,在找對(duì)應(yīng)邊、對(duì)應(yīng)角時(shí),可以針對(duì)兩個(gè)三角形不同的位置關(guān)系,尋
找對(duì)應(yīng)邊、角的規(guī)律:(1)有公共邊的,公共邊一定是對(duì)應(yīng)邊;(2)有公共角的,公共角一定是對(duì)應(yīng)角;
(3)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角:兩個(gè)全等三角形中一對(duì)最長的邊(或最大的角)是對(duì)應(yīng)邊(或
角),一對(duì)最短的邊(或最小的角)是對(duì)應(yīng)邊(或角)
六、教后記
第22頁共138頁
12.2.1三角形全等的判定(SSS)
教學(xué)內(nèi)容
本節(jié)課主要內(nèi)容是探索三角形全等的條件(SSS),及利用全等三角形進(jìn)行證明.
教學(xué)目標(biāo)
1.知識(shí)與技能
了解三角形的穩(wěn)定性,會(huì)應(yīng)用“邊邊邊”判定兩個(gè)三角形全等.
2.過程與方法
經(jīng)歷探索“邊邊邊”判定全等三角形的過程,解決簡單的問題.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)有條理的思考和表達(dá)能力,形成良好的合作意識(shí).
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握“邊邊邊”判定兩個(gè)三角形全等的方法.
2.難點(diǎn):理解證明的基本過程,學(xué)會(huì)綜合分析法.
3.關(guān)鍵:掌握?qǐng)D形特征,尋找適合條件的兩個(gè)三角形.
教具準(zhǔn)備
一塊形狀如圖1所示的硬紙片,直尺,圓規(guī).
(1)(2)
教學(xué)方法
采用“操作——實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生親自動(dòng)手,形成直觀形象.
教學(xué)過程
一、設(shè)疑求解,操作感知
【教師活動(dòng)】(出示教具)
問題提出:一塊三角形的玻璃損壞后,只剩下如圖2所示的殘片,你對(duì)圖中的殘片作哪些測量,就
可以割取符合規(guī)格的三角形玻璃,與同伴交流.
【學(xué)生活動(dòng)】觀察,思考,回答教師的問題.方法如下:可以將圖1的玻璃碎片放在一塊紙板上,然
后用直尺和鉛筆或水筆畫出一塊完整的三角形.如圖2,剪下模板就可去割玻璃了.
第23頁共138頁
【理論認(rèn)知】
如果△ABCgzXA'B'C',那么它們的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.反之,如果AABC與B'C'
滿足三條邊對(duì)應(yīng)相等,三個(gè)角對(duì)應(yīng)相等,即AB=A'B',BC=B,C',CA=C'A',/A=/A',ZB=ZB;,
ZC=ZCZ.
這六個(gè)條件,就能保證△ABCgAA'B'C,從剛才的實(shí)踐我們可以發(fā)現(xiàn):只要兩個(gè)三角形三條對(duì)
應(yīng)邊相等,就可以保證這兩塊三角形全等.
信不信?
【作圖驗(yàn)證】(用直尺和圓規(guī))
先任意畫出一個(gè)△ABC,再畫一個(gè)AA'B'C',使A'B'=AB,B'C=BC,CA'=CA.把畫出的AA'
B'C'剪下來,放在aABC上,它們能完全重合嗎?(即全等嗎)
【學(xué)生活動(dòng)】拿出直尺和圓規(guī)按上面的要求作圖,并驗(yàn)證.(如課本圖11.2-2所示)
畫一個(gè)4A'B'C,使A'B'=AB',A'C=AC,BzC'=BC:
1.畫線段取B'C=BC;
2.分別以B'、Cz為圓心,線段AB、AC為半徑畫弧,兩弧交于點(diǎn)A';
3.連接線段A'B'、A'C'.
【教師活動(dòng)】巡視、指導(dǎo),引入課題:“上述的生活實(shí)例和尺規(guī)作圖的結(jié)果反映了什么規(guī)律?”
【學(xué)生活動(dòng)】在思考、實(shí)踐的基礎(chǔ)上可以歸納出下面判定兩個(gè)三角形全等的定理.
(1)判定方法:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡寫成“邊邊邊”或“SSS”).
(2)判斷兩個(gè)三角形全等的推理過程,叫做證明三角形全等.
【評(píng)析】通過學(xué)生全過程的畫圖、觀察、比較、交流等,逐步探索出最后的結(jié)論——邊邊邊,在這個(gè)
過程中,學(xué)生不僅得到了兩個(gè)三角形全等的條件,同時(shí)增強(qiáng)了數(shù)學(xué)體驗(yàn).
二、范例點(diǎn)擊,應(yīng)用所學(xué)
【例1】如課本圖11.2—3所示,AABC是一個(gè)鋼架,AB=AC,AD是連接點(diǎn)A與BC中點(diǎn)D的支架,求
證△ABDgaACD.(教師板書)
【教師活動(dòng)】分析例1,分析:要證明AABD絲4ACD,可看這兩個(gè)三角形的三條邊是否對(duì)應(yīng)相等.
證明::D是BC的中點(diǎn),A
BD=CD
在AABD和4ACD中BDC
第24頁共138頁
AB=AC,
<BD=CD,
AD=AD.
AABD^AACD(SSS).
【評(píng)析】符號(hào)"I'表示"因?yàn)?,表示“所以";從例1可以看出,證明是由題設(shè)(已知)出
發(fā),經(jīng)過一步步的推理,最后推出結(jié)論(求證)正確的過程.書寫中注意對(duì)應(yīng)頂點(diǎn)要寫在同一個(gè)位置上,
哪個(gè)三角形先寫,哪個(gè)三角形的邊就先寫.
三、實(shí)踐應(yīng)用,合作學(xué)習(xí)
【問題思考】
已知AC=FE,BC=DE,點(diǎn)A、D、B、F在直線上,AD=FB(如圖所示),要用“邊邊邊”證明AABC名△FDE,
除了己知中的AC=FE,BC=DE以外,還應(yīng)該有什么條件?怎樣才能得到這個(gè)條件?
【教師活動(dòng)】提出問題,巡視、引導(dǎo)學(xué)生,并請(qǐng)學(xué)生說說自己的想法.
【學(xué)生活動(dòng)】先獨(dú)立思考后,再發(fā)言:“還應(yīng)該有AB=FD,只要AD=FB兩邊都加上DB即可得到AB=FD.”
【教學(xué)形式】先獨(dú)立思考,再合作交流,師生互動(dòng).
四、隨堂練習(xí),鞏固深化
課本P37練習(xí).
【探研時(shí)空】
如圖所示,AB=DF,AC=DE,BE=CF,BC與EF相等嗎?你能找到一對(duì)全等三角形嗎?說明你的理
由.(BC=EF,AABC^ADFE)
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1.全等三角形性質(zhì)是什么?
2.正確地判斷出全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,利用全等三角形處理問題的基礎(chǔ),你是怎樣掌握判
斷對(duì)應(yīng)邊、對(duì)應(yīng)角的方法?
3.“邊邊邊”判定法告訴我們什么呢?(答:只要一個(gè)三角形三邊長度確定了,則這個(gè)三角形的形
狀大小就完全確定了,這就是三角形的穩(wěn)定性)
第25頁共138頁
六、布置作業(yè),專題突破
1.課本P15習(xí)題11.2第1,2題.
2.選用課時(shí)作業(yè)設(shè)計(jì).
七、板書設(shè)計(jì)
把黑板平均分成三份,左邊部分板書“邊邊邊”判定法,中間部分板書例題,右邊部分板書練習(xí).
八、教后記
第26頁共138頁
12.2.2三角形全等判定(SAS)
教學(xué)內(nèi)容
本節(jié)課主要內(nèi)容是探索三角形全等的條件(SAS),及利用全等三角形證明.
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)“邊角邊”判定兩個(gè)三角形的方法.
2.過程與方法
經(jīng)歷探究三角形全等的判定方法的過程,學(xué)會(huì)解決簡單的推理問題.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)合情推理能力,感悟三角形全等的應(yīng)用價(jià)值.
重、難點(diǎn)及關(guān)鍵
1.重點(diǎn):會(huì)用“邊角邊”證明兩個(gè)三角形全等.
2.難點(diǎn):應(yīng)用結(jié)合法的格式表達(dá)問題.
3.關(guān)鍵:在實(shí)踐、觀察中正確選擇判定三角形全等的方法.
教具準(zhǔn)備投影儀、直尺、圓規(guī).
教學(xué)方法采用“操作——實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生有一個(gè)直觀的感受.
教學(xué)過程
一、回顧交流,操作分析
【動(dòng)手畫圖】
【投影】作一個(gè)角等于已知角.
【學(xué)生活動(dòng)】動(dòng)手用直尺、圓規(guī)畫圖.
已知:ZAOB.
求作:ZAiOiBp使NAQ|Bi=/AOB.
【作法】(1)作射線0B1;(2)以點(diǎn)O為圓心,以適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)
D;(3)以點(diǎn)01為圓心,以O(shè)C長為半徑畫弧,交于點(diǎn)Ci;(4)以點(diǎn)Ci為圓心,以CD長為半徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年武漢市第八醫(yī)院武漢市肛腸醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 農(nóng)村農(nóng)產(chǎn)品品質(zhì)提升與認(rèn)證
- 2025年度消防應(yīng)急疏散演練終止合同協(xié)議書(場地限制)3篇
- 2025年度消防安全隱患排查及整改服務(wù)合同協(xié)議書3篇
- 2025年度汽車銷售與汽車文化合同范本3篇
- 企業(yè)績效考核應(yīng)用現(xiàn)狀及優(yōu)化策略探討
- 基層水利工程基本建設(shè)項(xiàng)目財(cái)務(wù)管理存在的問題及對(duì)策探析
- 生姜的種植方法及栽培技術(shù)
- 新質(zhì)生產(chǎn)力理念下“三層級(jí)”平臺(tái)經(jīng)濟(jì)反壟斷規(guī)制架構(gòu)
- 電梯維保合同范本-20220411224529
- 數(shù)據(jù)中心電力設(shè)備調(diào)試方案
- 2024年度國際物流運(yùn)輸合同3篇
- 新入職員工年終工作總結(jié)課件
- 廣西南寧市第三十七中學(xué)2024-2025學(xué)年七年級(jí)上學(xué)期11月第一次月考語文試題(含答案)
- 中華傳統(tǒng)文化之文學(xué)瑰寶學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 靜脈導(dǎo)管維護(hù)
- 年度先進(jìn)員工選票標(biāo)準(zhǔn)格式
- MA5680T開局配置
- 螺桿式風(fēng)冷冷水(熱泵)機(jī)組電路圖
- CFG樁施工記錄表范本
- 《錄音技術(shù)與藝術(shù)》課程教學(xué)大綱(新版)(共11頁)
評(píng)論
0/150
提交評(píng)論