




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
StructuralReformsand
EconomicGrowth:A
MachineLearning
Approach
AnilAri,GaborPulaandLiyangSun
WP/22/184
IMFWorkingPapersdescriberesearchinprogressbythe
author(s)andarepublishedtoelicitcommentsandto
encouragedebate.
TheviewsexpressedinIMFWorkingPapersarethoseofthe
author(s)anddonotnecessarilyrepresenttheviewsoftheIMF,
itsExecutiveBoard,orIMFmanagement.
2022
SEP
?2022InternationalMonetaryFund
WP/22/184
IMFWorkingPaper
EuropeanDepartment
StructuralReformsandEconomicGrowth:AMachineLearningApproachPreparedbyAnilAri,GaborPulaandLiyangSun
AuthorizedfordistributionbyIvannaVladkovaHollar
September2022
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:Thequalitativeandgranularnatureofmoststructuralindicatorsandthevarietyindatasourcesposesdifficultiesforconsistentcross-countryassessmentsandempiricalanalysis.Weovercometheseissuesbyusingamachinelearningapproach(thepartialleastsquaresmethod)tocombineabroadsetofcross-countrystructuralindicatorsintoasmallnumberofsyntheticscoreswhichcorrespondtokeystructuralareas,andwhicharesuitableforconsistentquantitativecomparisonsacrosscountriesandtime.Withthisnewlyconstructeddatasetofsyntheticstructuralscoresin126countriesbetween2000-2019,weestablishstylizedfactsaboutstructuralgapsandreforms,andanalyzetheimpactofreformstargetingdifferentstructuralareasoneconomicgrowth.Ourfindingssuggestthatstructuralreformsintheareaofproduct,laborandfinancialmarketsaswellasthelegalsystemhaveasignificantimpactoneconomicgrowthina5-yearhorizon,withonestandarddeviationimprovementinoneofthesereformareasraisingcumulative5-yeargrowthby2to6percent.Wealsofindsynergiesbetweendifferentstructuralareas,inparticularbetweenproductandlabormarketreforms.
RECOMMENDEDCITATION:Ari,A.,Pula,G.,&Sun,L.(2022).StructuralReformsandEconomicGrowth:AMachineLearningApproach.IMFWorkingPaper,WP/22/184
JELClassificationNumbers:E02,C54,C55,D58,O43,O47
Keywords:Structuralreforms,institutions,economicgrowth
Author’sE-MailAddress:aari@,gpula@,lsun20@cemfi.es
WORKINGPAPERS
StructuralReformsandEconomicGrowth:AMachineLearningApproach
PreparedbyAnilAri,GaborPulaandLiyangSun1
1TheauthorsaregratefultoIvannaVladkovaHollar,IppeiShibata,MarinaMendesTavaresandseminarsparticipantsattheIMFforhelpfulcommentsandsuggestions.ExcellentresearchassistancewasprovidedbySamuelVictorRomeroMartinez.Thedatasetofsyntheticstructuralscoresisavailableuponrequestfromtheauthors.Allerrorsareourown.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND2
Contents
I.Introduction
3
II.StructuralIndicators
5
A.Dataoverview
5
B.SyntheticstructuralscoresviaPartialLeastSquares
6
C.PLSestimationprocedure
7
D.SyntheticstructuralscoreasthepredictedvaluefromthePLSmodel
8
III.StructuralIndicators
12
A.Impactofstructuralreformsongrowth
12
B.Synergiesofstructuralreformsongrowth
17
C.Theroleofstructuralreformsduringcrises
20
IV.Conclusions
2
1
References
21
Appendix
23
A.Listofstructuralindicators
23
B.Descriptionofimputationformissingindicators
27
C.ComparisonbetweenthePLSstructuralscoreandsimple-averagescore
27
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND3
I.Introduction
Policymakersoftenpursuestructuralreformstoaidrecoveryfromcrisesandstimulateeconomicgrowth.Thisplacestheonusonpolicymakerstoidentifywhichcombinationsandsequencesofstructuralreformswouldbethemostgrowth-enhancing(IMF,2015;Rodrik,2010).However,akeychallengeisthatstructuralreformsareinherentlydifficulttomeasureastheyofteninvolvepoliciesthataregearedtowardsimprovingefficiencyofmarkets.Commonapproachesquantifystructuralreformsbasedonthestrengthofregulatorychangesthatremoveinefficiencies(seee.g.,Alesinaetal.,2020).Whiletheseapproachesprovidevaluableinsightsontheimpactofpolicyactions,theymaynotfullyreflectreformoutcomes,whichdependonthespecificsofpolicyimplementationaswellastheenvironmentinwhichreformsareimplemented.Anotherdrawbackoftheseapproachesisthattheyhavelimitedcountrycoverageduetolimiteddataavailability.Otherapproachesrelyonsurvey-basedindicatorsofstructuraloutcomestoassesstheimpactofstructuralreformsandconductcross-countryanalysis(seee.g.,EgertandGal,2016;Egert,2017).Whiletheseindicatorsareinformativeaboutstructuralperformance,empiricalanalysisiscomplicatedbythelargenumberofindicators,thecorrelationbetweenthemandbiasesthatmayarisefromtheirsubjectivenature.
Weuseamachinelearningapproachtoconstructsyntheticstructuralscoresfromalargenumberofstructuralindicators.Ouranalysiscontributestotheexistingliteraturebyusingpartialleastsquares(PLS)toaggregatestructuralindicatorsforgrowthanalysis,insteadofsimpleaveragingoradhocweighingschemes.OurPLSweightingschemeassignshigherweightstoindicatorsthataremorepredictiveofhighGDPpercapita,therebyextractingusefulinformationfromavailabledatawhileremovingthenoiseandbiasesassociatedwithsubjectiveandsurvey-basedindicators.Ourapproachalsoaccountsforthecorrelationandredundancyamongstructuralindicators,thereforeavoidingtheduplicationbiasthatsimpleaveragingwouldsufferfrom.1
Oursyntheticstructuralscoresarebasedonarichanddisaggregateddatasetofstructuralindicators.WerelyontheIMF’sStructuralandFinancialIndicatorsdatabasewhichdrawsfromseveralsourcesandincludes275structuralindicatorsfrom126countries(Figure1).2WethengrouptheseindicatorsintosixstructuralareasidentifiedinIMF(2015):financialsystem(77),tradeandopenness(28),legalsystem(37),labormarkets(74),businessenvironment(45)andtaxpolicy(14).WethenconstructasyntheticstructuralscoreforeachstructuralareaasthePLS-weightedaverageoftheunderlyingstructuralindicators.
1OurapproachbuildsuponAriandPula(2021)whichproposestheuseofprincipalcomponentanalysis(PCA),toformsyntheticstructuralfactors.ThePCAweightsaccountforthecorrelationbetweenindividualindicatorsbutaresensitivetoduplicationofindicators,whichiscommoninourdatasetduetooverlapsindatasources.
2OuranalysisincludesindicatorsfromtheWorldBank’sDoingBusiness(DB)dataset,whichhasrecentlybeensuspendedduetoconcernsaboutdatamanipulation.Whilethisposesadrawbackforourstudyaswellasasignificantportionoftheliteratureonstructuralreforms,itisworthnotingthatthisistheformofsubjectivitybiasthatweaimtoalleviatewithourPLSapproach.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND4
Figure1.Structuralindicatoroverview
Sourcesofstructuralindicators
Areasofstructuralindicators
Usingthesyntheticstructuralscores,wefindsignificantgrowthimpactsfromreformsincertainstructuralareas,aswellassynergiesbetweendifferentstructuralareas.Ourfindingssuggestthatstructuralreformsintheareasofproduct,laborandfinancialmarketsaswellasthelegalsystemhaveasignificantimpactoneconomicgrowthina5-yearhorizon,withonestandarddeviationimprovementinoneofthesereformareasraisingcumulative5-yeargrowthby2to6percent.Wealsofindsynergiesbetweendifferentstructuralareas,inparticularbetweenproductandlabormarketreforms.
Thepaperisorganizedasfollows.SectionIIoverviewsthedataanddiscussesourapproachtoimputingmissingindicators.SectionIIIappliesPLStoconstructsyntheticstructuralscoresbasedontheimputedindicators,controllingforthecorrelationamongtheindividualstructuralindicators,andassigningtheweightstoreflecthowpredictivetheindicatorsareforoutput.SectionIVusesthesyntheticstructuralscorestoanalyzetheimpactofstructuralreformsongrowth.Finally,SectionVconcludes.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND5
II.StructuralIndicators
A.Dataoverview
Theperformanceofstructuralreformsismeasuredusingquantitativeindicators.Cross-countrydataonalargesetofstructuralindicatorsareobtainedfromtheFund’sMacrostructuralDatabase,whichcombinesdatafromseveralsources.Theseindicatorsarethencategorizedtosixbroadermacrostructuralareas,listedas:
-Legalsystem,whichincludesstructuralindicatorsrelatedtocorruption,governance,crime,theruleoflawandtheprotectionofpropertyrights.
-Financialsystem,whichcoversstructuralindicatorspertainingtofinancialdevelopment,accesstofinancialservicesandthesoundnessofthebankingsectorandfinancialmarkets.
-Productmarkets,whichcontainsstructuralindicatorsoncompetition,informality,andadministrativeandregulatoryburdensinproductmarkets.
-Labormarkets,whichincludesstructuralindicatorsrelatedtominimumwagesandotherregulationsthataffectlabormarketflexibility.
-Taxpolicy,whichcapturesdistortionsinincentivesassociatedwithvarioustaxes.
-Tradeandopenness,whichcoverstariffsandnon-tariffbarrierstotrade.
Weexcludecyclicalfinancialindicators,whichreflectthebusinesscycleratherthanqualityoffinancialinstitutions.1
Datacoveragevariesalotbycountryandyear,andthemissingpatternissystematicasopposedtomissing-at-random.Forexample,severalindicatorsareonlyupdatedeveryotheryearwhilecoverageforseveralindicatorsonlystartinrecentyears.Asafirstpassinimputing
missingvalues,wetakefive-yearaveragesofindicatorsstartingintheyearof2000.Toavoiddeflatingthevariance,weonlyretainthedataforeveryfiveyears.Wethenexcludeindicatorsthatmissingmorethan20%ofthevaluesandimputetherestofmissingvaluesbyamultipleimputationprocedureasdescribedinAppendix
0
Thereisnosimplerecommendationforamaximumproportionofmissingvaluesthatcanbeproperlyconsideredinimputationmethods.Theresultsstarttobeunstableforathresholdabove20%andweleaveittofutureresearchtogaugetheoptimalamountofimputation.
1Examplesofthecyclicalfinancialindicatorsarethevolumeoftotalsyndicatedloansissuedandavailabilityofprivatecredit.
INTERNATIONALMONETARYFUND6
B.SyntheticstructuralscoresviaPartialLeastSquares
Giventhehighnumberofstructuralindicators,dimensionalityreductionisnecessarytoimproveinterpretabilityforfurtheranalysis.Wemakethefollowingobservationsontheseindicators:
-Wewanttocaptureindicatorsassociatedwithstrongeconomicperformance,whichcanbemeasuredwiththeabilitytopredicthighfuturepercapitaGDP.
-Theindicatorscanbehighlycorrelatedwithinandacrossstructuralareas.
-Wehavemanyindicatorsrelativetothesamplesize.Thereare275indicators,whichissubstantialcomparedtoasamplesizeof504(126countriesand4timeperiodsin2000-04,2005-09and2010-14,2015-19).
Theseobservationsmotivatetheappropriateapproachtodimensionalityreduction.Thena?veapproachforpredictionistoestimatealinearregressionontheseindicators,andusethepredictedvalueasthecompositescore.However,whentherearemanycorrelatedvariablesinalinearregressionmodel,theircoefficientscanbecomeunstable:alargepositivecoefficientononeindicatorcanbecanceledbyasimilarlylargenegativecoefficientonitscorrelatedindicator.LASSOimprovesuponlinearregressioninallowingforhigh-dimensionalindicators,whichassumesthereareonlyafewpredictorsfortheoutcomevariable.Whilethisassumptionismorelikelytoholdincertainsettingssuchaspredictingnon-performingloansinArietal.(2021),itisunlikelytoholdforouroutcomevariable,logoffuturepercapitaGDP(inPPP).Consequently,LASSOwouldreducethedimensiontoomuchandresultinpoorpredictiveperformance.
Anothercommondimensionalityreductiontechniqueisprincipalcomponentanalysis(PCA),whichseeksaweightedaverageoftheindicatorsthathavehighvariationacrosscountries.Thishastheadvantageofmakingfulluseoftheavailableinformationtominimizenoiserelatedtoanyindividualstructuralindicatoranditalsoprovidesaweightingschemethataccountsforthecorrelationbetweenindividualindicators.However,thisapproachperformspoorlywhenwehaveredundantindicators.2
Partialleastsquares(PLS)isaflexiblemachinelearningtechniquethatachievesbothgoalsandisappropriateforoursetting(Hastieetal.,2009).PLSimprovesuponPCAbyaddingapredictivemodel.ToreceivehighweightsunderthePLSweightingscheme,theindicatorsalsoneedtobepredictiveoftheoutcome.PLSalsoimproveslinearregressionbyaccountingforthecorrelationbetweenindividualindicators.UnlikeLASSO,PLSdoesnotassumeonlyfewindicatorsarepredictiveoftheoutcome.InAppendixC,wealsoillustratetheadvantagesofPLScomparedtoscoresthatarebasedonsimpleaveragesofstructuralindicators.BelowweprovidefurtherdetailsaboutthePLSmethod.
2Forexample,theeconomicfreedomindexfromtheFraserInstituteisconstructedbasedondatafromWDI,theWEFGCR,theWGI,andtheWBDoingBusiness.ThereforetheFraserInstituteindicatorsareredundantwhenweincludetheirsourceindicators.Whileitispossibletomanuallyremovesuchredundancybasedonacarefulexaminationofthedatasourcesoftheindicators,wefocusonadata-drivenapproach.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND7
C.PLSestimationprocedure
LetXtdenotethevectoroftheindicatorsincountryiattimet.Eachindicatorvectorisfromoneofthesixstructuralareasc.Lettheindexjfurtherdenotethesubcategoryoftheindicatorwithinthestructuralarea.ThePLSmethodestimatesthefollowingpredictivemodelforthefive-year-aheadpercapitaGDP(yi,t):
c
yi,t=a+∑∑em∑yjc,mXt,j+ei,t
mj
(1)
wheremindexesthenumberofcomponentsused.BecausetheLHSofEquation(1)isthefive-year-aheadpercapitaGDP,weusethelargestpossiblesamplewithindicatorsfrom2000-2010toestimateEquation(1).Howeversinceweaimforgoodpredictiveperformance,wecannotjustchoosethenumberofcomponentstomaximizethein-samplefitfor2000-2010whenweestimateEquation(1).Wethereforeuseleave-one-outcross-validationtodeterminethenumberofcomponents,whichsuggeststhateightcomponentsprovidethebestpredictiveperformance.
Unlikethelinearmethodthatminimizesthein-samplepredictionerror,thePLSmethodestimatesequation(1)usinganiterativeprocedureconsistingofthefourstepsdescribedbelow.Thisprocedureprovidesanimplicitregularizationonthemagnitudeofthecoefficients(seestep4)oftheprocedure,whichimprovesuponthelinearmethod.Operationally,weusetheRlibraryplsrtoimplementthePLS.
Initializetheright-hand-side(RHS)ofequation(1)withtheoriginaldataX=Xtandinitializethepredictedleft-hand-side(LHS)withthesamplemeanoftheoutcome=.NotetheRHS
isstandardizedtobemeanzeroandstandarddeviationone.Forthem-thcomponents,thePLSalgorithmproceedsasthefollows:
1)Formthecomponentbasedontheoriginalinputs
c
zm=∑X(2)
where=cov(Xyi,t)isthecovariancebetweentheoriginalinputsandtheoutcome;
2)CalculatethecoefficientinfronttothecomponentastheOLScoefficientofregressingthe
outcomeonthecomponent
(3)
m=
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND8
3)Predicttheoutcomeusingallcomponentssofaras=+mzm
(4)
4)OrthogonalizexwithrespecttothecomponentzmtogettheupdatedinputxThisensuresthenextcomponentzm+1,whichisaweightedaverageofxisuncorrelatedwithzm.Thecorrelationacrossindicatorsisaccountedforinthisstep.Furthermore,theupdatedinputxisaweightedaverageoftheoriginalinputsxwithweightsreflectingthecovarianceacrosstheoriginalinputsandtheircovariancewiththeoutcome.
D.SyntheticstructuralscoreasthepredictedvaluefromthePLSmodel
Weconstructthesyntheticstructurescorefor2000-2015inagivencategorycasthepredictedvaluefromthePLSmodel(1),predictedusingthe2000-2015indicators.Specifically,thesyntheticstructuralscoreisthepredictedvalueusingthePLScoefficientestimatesmandallcomponentszm:
mzm=m∑cxm?1)(5)
whichisaweightedaverageoftheoriginalindicatorsasexplainedabove.Therefore,wecanexaminetheindicatorsthatreceivethelargestweightstoconfirmwhetherthecompositescoresareinterpretable.
Table1
tabulatesindicatorswithlargeweightsforeachstructuralarea.ThesesubcategoriesmostlycoincidewiththoseselectedbyIMF(2019)toassessstructuralperformanceintheseareas.ThisprovidescredibilitytothePLSmethodforselectinghighlyinterpretablesubcategoriesinconstructingthescores.Tomakescorescomparableacrossstructuralareas,forfurtheranalysiswestandardizeeachscoretohavezeromeanandunitvariance.Ifacountryscoresoneinthefinancialcompositebutminusoneinthebusinessenvironmentcomposite,thenthiscanbeinterpretedasitsstructuralperformanceinthefinancialareacontributingonestandarddeviationmoretoitspercapitaGDPthananaveragecountry,whiletheoppositeistrueforitsperformanceinthebusinessenvironmentstructuralarea.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND9
Table1.Keystructuralindicatorsinthecompositionofcompositestructurescores
Note:Greylinesrepresentsubgroupsofindicatorsthatcontributeheavilytowardthecompositescoreswithineachstructuralarea.Eachlinebelowthegreylinelistsexamplesofthestructuralindicatorinthesesubgroups.
Basedonthecompositeindicators,thereareflatteningtrendsacrossthestructuralareasasshowninFigure2.Sincestructuralcompositesareconstructedtopredictoutputlevels,anupwardtrendinthecompositecanbeinterpretedasameasureforstructuralreforms(i.e.,improvementsinstructuralperformance),andtheslopesofthesetrendscanbeinterpretedasameasureforreformspeed.Therehavebeenstructuralreformsinmostareasexceptlegalsystem,wherereformssloweddowninrecentyears.ThistrendisconsistentwithIMF(2019),whichfindsstabilizationofpoliciesinmanystructuralareasinlate2000s,andnoimprovementinthelegalsystem.Insteadofstructuralindicators,IMF(2019)measuresstructuralreformsbasedonderegulations.ThefactthatcompositescorespresentsimilarstylizedfactswithIMF(2019)lendsvaliditytoourapproachofaggregatingstructuralindicators.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND10
Figure2.Trendsofstructuralcompositebystructuralareas
Note:Thehorizontalaxisindicatesthefive-yearwindowthestructuralindicatorsarecollected.Thelinesplottheaverageofthecompositeacrosscountries.Thecompositesarestandardizedtohavezeromeanandunitvarianceacrossallcountriesandyears.
Thepatternofstructuralreformvariesacrossincomeregionasshownin
Figure
33.ThereisalargegapbetweenthestructuralcompositesofEMsandLICsandthoseofAEsintheareaofbusinessenvironment,labormarket,legalsystemandtradeandopenness.Despitestrongpushforreforms,thisgapsuggeststhatEMsandLICshavesubstantialreformdeficitintheseareas,inlinewiththeconclusionofIMF(2019).Nonetheless,LICshaveshownimprovementinlabormarket,reflectedinanupwardtrendinthecompositescores.
Table2
furthershowstheslowdowninlegalreformsiscommontoallgeographicregions.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND11
Figure3.Trendsofstructuralcompositeacrossincomegroups
Note:Thehorizontalaxisindicatesthefive-yearwindowthestructuralindicatorsarecollected.Thelinesplottheaverageofthecompositeacrosscountriesinagivenregion.Thecompositesarestandardizedtohavezeromeanandunitvarianceacrossallcountriesandyears.
Table2.Shareofcountriesthatexperienceincreasesinstructuralcomposites
Note:Redreflectslowreformactivities.Greenreflectsreformactivities.
IMFWORKINGPAPERSStructuralReformsandEconomicGrowth:AMachineLearningApproach
INTERNATIONALMONETARYFUND12
III.StructuralIndicators
A.Impactofstructuralreformsongrowth
Theimpactofstructuralreformsongrowthisfirstestimatedusingcross-countryregressions.Letiandtindexcountryandeachofyearwindows:2000-2004,2005-2009,2010-2015,and2016-2019.WetakethefiveyearaverageofGDPgrowthrategi,t.WeuseSttodenotethecompositestructuralscoreforeachofthesixstructuralareas.Wemeasurestructuralreformasthechangeinthestructuralcomposite,whichisdenotedwith」St?1.Sinceweareinterestedinmarginalimpactofstructuralreforminanygivenarea,holdingotherareasconstant,weestimatethe5-yearcumulativegrowthimpactusingthefollowingregressionspecification
gi,t=ai+yt+Fs」St?1+wxxi,t?1+ei,t
whereaiisavectorofcountryregionfixedeffectsanddummiesforemergingmarketeconomiesandoilexporters,3andytaretimefixedeffects.Thesetofcontrolvariablesxi,tincludesinitialeconomicconditionsasmeasuredbythepercapitaGDPlevelin2000,theVIXvolatilityindexinteractedwithexternaldebt,theVIXvolatilityindexinteractedwithcurrentaccountdeficits,andvulnerabilitytooilpriceshocksasmeasuredbytheinteractionoftheoilexporterdummywithoilprices.TheregressioncoefficientFscanbeinterpretedasthereformelasticityofgrowthforagivenstructuralarea.
Table3presentstheestimatedregressioncoefficients,andeachcolumnvariesthespecificationbyalternatingfixedeffectsandcontrolvariables.Theestimatesarerobusttovariousspecifications:onestandarddeviationincreaseinthecompositescoresforbusinessenvironment,financialandlabormarkets,legalsystemhaveasignificantpositiveimpactongrowth,rangingfrom2to6%,holdingotherstructuralareasconstant.However,tradeandtaxpolicyreformshaveastatisticallyinsignificantimpactongrowth.
3Theseareconstructe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西藏拉薩中學2024-2025學年5月高考化學試題模練習(一)含解析
- 遼寧省葫蘆島市六校聯(lián)考2025年初三下學期第一次階段性檢測試題物理試題含解析
- 南京交通職業(yè)技術(shù)學院《Python程序設(shè)計語言》2023-2024學年第二學期期末試卷
- 江西建設(shè)職業(yè)技術(shù)學院《作物栽培原理》2023-2024學年第二學期期末試卷
- 山西工程職業(yè)學院《數(shù)據(jù)結(jié)構(gòu)與算法實驗》2023-2024學年第二學期期末試卷
- 西安醫(yī)學院《白描》2023-2024學年第二學期期末試卷
- 股權(quán)轉(zhuǎn)讓居間協(xié)議書補充協(xié)議書
- 集資房屋買賣協(xié)議書
- 專科生答辯秘籍
- 物業(yè)服務(wù)合作協(xié)議書二零二五年
- 2024年濰坊市技師學院招聘筆試真題
- 匯能控股集團內(nèi)蒙古卓正煤化工有限公司招聘筆試題庫2025
- 福建省龍巖市龍巖市一級校2024-2025學年高一下學期4月期中聯(lián)考數(shù)學試題(含答案)
- 北京市豐臺區(qū)2025屆高三下學期3月一模試題 英語 含解析
- 飾品工廠知識培訓課件
- 中小學生五一勞動節(jié)假期安全教育課件
- 無人機飛手培訓班合作合同協(xié)議范本模板
- 港口智能運維系統(tǒng)-全面剖析
- 中國時尚產(chǎn)業(yè)的發(fā)展趨勢分析
- VDA6.3-2023版培訓教材課件
- 2025河北保定鈔票紙業(yè)有限公司人員招聘29人筆試參考題庫附帶答案詳解
評論
0/150
提交評論