數(shù)據(jù)挖掘分類方法_第1頁
數(shù)據(jù)挖掘分類方法_第2頁
數(shù)據(jù)挖掘分類方法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)據(jù)挖掘分類方法數(shù)據(jù)倉庫,數(shù)據(jù)庫或者其它信息庫中隱藏著許多可以為商業(yè)、科研等活動的決策提供所需要的知識。分類與預(yù)測是兩種數(shù)據(jù)分析形式,它們可以用來抽取能夠描述重要數(shù)據(jù)集合或預(yù)測未來數(shù)據(jù)趨勢的模型。分類方法(Classification)用于預(yù)測數(shù)據(jù)對象的離散類別(CategoricalLabel);預(yù)測方法(Prediction)用于預(yù)測數(shù)據(jù)對象的連續(xù)取值。分類技術(shù)在很多領(lǐng)域都有應(yīng)用,例如可以通過客戶分類構(gòu)造一個分類模型來對銀行貸款進行風(fēng)險評估;當(dāng)前的市場營銷中很重要的一個特點是強調(diào)客戶細(xì)分。客戶類別分析的功能也在于此,采用數(shù)據(jù)挖掘中的分類技術(shù),可以將客戶分成不同的類別,比如呼叫中心設(shè)計時可以分為:呼叫頻繁的客戶、偶然大量呼叫的客戶、穩(wěn)定呼叫的客戶、其他,幫助呼叫中心尋找出這些不同種類客戶之間的特征,這樣的分類模型可以讓用戶了解不同行為類別客戶的分布特征;其他分類應(yīng)用如文獻檢索和搜索引擎中的自動文本分類技術(shù);安全領(lǐng)域有基于分類技術(shù)的入侵檢測等等。機器學(xué)習(xí)、專家系統(tǒng)、統(tǒng)計學(xué)和神經(jīng)網(wǎng)絡(luò)等領(lǐng)域的研究人員已經(jīng)提出了許多具體的分類預(yù)測方法。下面對分類流程作個簡要描述:訓(xùn)練:訓(xùn)練集——>特征選取——>訓(xùn)練——>分類器分類:新樣本>特征選取>分類>判決最初的數(shù)據(jù)挖掘分類應(yīng)用大多都是在這些方法及基于內(nèi)存基礎(chǔ)上所構(gòu)造的算法。目前數(shù)據(jù)挖掘方法都要求具有基于外存以處理大規(guī)模數(shù)據(jù)集合能力且具有可擴展能力。下面對幾種主要的分類方法做個簡要介紹:決策樹決策樹歸納是經(jīng)典的分類算法。它采用自頂向下遞歸的各個擊破方式構(gòu)造決策樹。樹的每一個結(jié)點上使用信息增益度量選擇測試屬性??梢詮纳傻臎Q策樹中提取規(guī)則。KNN法(K-NearestNeighbor)KNN法即K最近鄰法,最初由Cover和Hart于1968年提出的,是一個理論上比較成熟的方法。該方法的思路非常簡單直觀:如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別。該方法在定類決策上只依據(jù)最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。KNN方法雖然從原理上也依賴于極限定理,但在類別決策時,只與極少量的相鄰樣本有關(guān)。因此,采用這種方法可以較好地避免樣本的不平衡問題。另外,由于KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對于類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。該方法的不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。另外還有一種ReverseKNN法,能降低KNN算法的計算復(fù)雜度,提高分類的效率。該算法比較適用于樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域采用這種算法比較容易產(chǎn)生誤分。SVM法SVM法即支持向量機(SupportVectorMachine)法,由Vapnik等人于1995年提出,具有相對優(yōu)良的性能指標(biāo)。該方法是建立在統(tǒng)計學(xué)習(xí)理論基礎(chǔ)上的機器學(xué)習(xí)方法。通過學(xué)習(xí)算法,SVM可以自動尋找出那些對分類有較好區(qū)分能力的支持向量,由此構(gòu)造出的分類器可以最大化類與類的間隔,因而有較好的適應(yīng)能力和較高的分準(zhǔn)率。該方法只需要由各類域的邊界樣本的類別來決定最后的分類結(jié)果。支持向量機算法的目的在于尋找一個超平面H(d),該超平面可以將訓(xùn)練集中的數(shù)據(jù)分開,且與類域邊界的沿垂直于該超平面方向的距離最大,故SVM法亦被稱為最大邊緣(maximummargin)算法。待分樣本集中的大部分樣本不是支持向量,移去或者減少這些樣本對分類結(jié)果沒有影響,SVM法對小樣本情況下的自動分類有著較好的分類結(jié)果。⑷VSM法VSM法即向量空間模型(VectorSpaceModel)法,由Salton等人于60年代末提出。這是最早也是最出名的信息檢索方面的數(shù)學(xué)模型。其基本思想是將文檔表示為加權(quán)的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通過計算文本相似度的方法來確定待分樣本的類別。當(dāng)文本被表示為空間向量模型的時候,文本的相似度就可以借助特征向量之間的內(nèi)積來表示。在實際應(yīng)用中,VSM法一般事先依據(jù)語料庫中的訓(xùn)練樣本和分類體系建立類別向量空間。當(dāng)需要對一篇待分樣本進行分類的時候,只需要計算待分樣本和每一個類別向量的相似度即內(nèi)積,然后選取相似度最大的類別作為該待分樣本所對應(yīng)的類別。由于VSM法中需要事先計算類別的空間向量,而該空間向量的建立又很大程度的依賴于該類別向量中所包含的特征項。根據(jù)研究發(fā)現(xiàn),類別中所包含的非零特征項越多,其包含的每個特征項對于類別的表達能力越弱。因此,VSM法相對其他分類方法而言,更適合于專業(yè)文獻的分類。(5)Bayes法Bayes法是一種在已知先驗概率與類條件概率的情況下的模式分類方法,待分樣本的分類結(jié)果取決于各類域中樣本的全體。設(shè)訓(xùn)練樣本集分為M類,記為C={c1,…,ci,???cM},每類的先驗概率為P(ci),i=1,2,…,M。當(dāng)樣本集非常大時,可以認(rèn)為P(ci)=ci類樣本數(shù)/總樣本數(shù)。對于一個待分樣本X,其歸于cj類的類條件概率是P(X/ci),則根據(jù)Bayes定理,可得到cj類的后驗概率P(ci/X):P(ci/x)=P(x/ci)?P(ci)/P(x)(1)若P(ci/X)=MaxjP(cj/X),i=1,2,…,M,j=1,2,…,M,則有x^ci(2)式(2)是最大后驗概率判決準(zhǔn)則,將式(1)代入式(2),則有:若P(x/ci)P(ci)=Maxj〔P(x/cj)P(cj)〕,i=1,2,…,M,j=1,2,…,M,則x^ci這就是常用到的Bayes分類判決準(zhǔn)則。經(jīng)過長期的研究,Bayes分類方法在理論上論證得比較充分,在應(yīng)用上也是非常廣泛的。Bayes方法的薄弱環(huán)節(jié)在于實際情況下,類別總體的概率分布和各類樣本的概率分布函數(shù)(或密度函數(shù))常常是不知道的。為了獲得它們,就要求樣本足夠大。另外,Bayes法要求表達文本的主題詞相互獨立,這樣的條件在實際文本中一般很難滿足,因此該方法往往在效果上難以達到理論上的最大值。(6)神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)分類算法的重點是構(gòu)造閾值邏輯單元,一個值邏輯單元是一個對象,它可以輸入一組加權(quán)系數(shù)的量,對它們進行求和,如果這個和達到或者超過了某個閾值,輸出一個量。如有輸入值X1,X2,...,Xn和它們的權(quán)系數(shù):W1,W2,...,Wn,求和計算出的Xi*Wi,產(chǎn)生了激發(fā)層a=(X1*W1)+(X2*W2)+...+(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論