版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
關(guān)于熱力學(xué)基本原理第一頁,共五十四頁,編輯于2023年,星期二熱力學(xué)第二定律目的:解決過程的方向和限度問題數(shù)學(xué)式特定過程恒容過程:恒壓過程:熱力學(xué)基本方程派生公式麥克斯韋關(guān)系式吉~亥方程熱力學(xué)狀態(tài)方程演繹推導(dǎo)應(yīng)用化學(xué)反應(yīng)應(yīng)用熱力學(xué)第二定律熵判據(jù),適用于任何過程熵增原理,適用于絕熱過程和孤立體系第二頁,共五十四頁,編輯于2023年,星期二ΔS單純PVT環(huán)境熵變凝聚態(tài)變溫理想氣體相變過程化學(xué)反應(yīng)1.10熵變的計算第三頁,共五十四頁,編輯于2023年,星期二pV絕熱T2’<T2T1T2=T1恒溫
理想氣體U=f(T)H=f(T)恒溫可逆過程絕熱可逆過程1.10熵變的計算第四頁,共五十四頁,編輯于2023年,星期二理想氣體的卡諾循環(huán)的p~V圖:1.10熵變的計算理想氣體的卡諾循環(huán)的T~S圖:ST△T=0△T=0△S=0△S=0第五頁,共五十四頁,編輯于2023年,星期二絕熱可逆1.10熵變的計算=0第六頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算相變化過程熵變的計算在100℃、1atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣在25℃、1atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣在100℃、2atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣在25℃、3176Pa下,1mol水蒸發(fā)成等溫等壓下的水蒸氣在100℃、1atm下,1mol水蒸發(fā)向真空蒸發(fā)成等溫等壓下的水蒸氣始終態(tài)相同熵變相同第七頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算100℃、1atm下,1mol水蒸發(fā)向真空蒸發(fā)成等溫等壓下的水蒸氣100℃、1atm,液態(tài)100℃、1atm,氣態(tài)向真空蒸發(fā)△S不可逆△S可逆第八頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算100℃、1atm下的1mol水可逆蒸發(fā)成100℃、1atm下的水蒸氣100℃、1atm,液態(tài)100℃、1atm,氣態(tài)可逆恒溫恒壓水活塞1atmQT=100℃1atmQT=100℃水蒸氣第九頁,共五十四頁,編輯于2023年,星期二100℃、1atm,液態(tài)100℃、1atm,氣態(tài)向真空蒸發(fā)不可逆非恒壓100℃、1atm下的1mol水真空蒸發(fā)成100℃、1atm下的水蒸氣水活塞QT=100℃QT=100℃水蒸氣真空1.10熵變的計算第十頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算25℃、1atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣25℃、1atm,液態(tài)25℃、1atm,氣態(tài)△S不可逆100℃、1atm,液態(tài)100℃、1atm,氣態(tài)△S可逆△S液態(tài)△S氣態(tài)第十一頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算25℃、1atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣25℃、1atm,液態(tài)25℃、1atm,氣態(tài)△H不可逆100℃、1atm,液態(tài)100℃、1atm,氣態(tài)△H可逆△H液態(tài)△H氣態(tài)第十二頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算在25℃、1atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣25℃、1atm,液態(tài)25℃、1atm,氣態(tài)△H不可逆△S不可逆100℃、1atm,液態(tài)100℃、1atm,氣態(tài)△H可逆△S可逆△H液態(tài)△H氣態(tài)25℃、1atm下,1mol水蒸發(fā)成等溫等壓下的水蒸氣過程不存在。第十三頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算100℃、1atm下,1mol水蒸發(fā)向真空蒸發(fā)成等溫等壓下的水蒸氣100℃、1atm,液態(tài)100℃、1atm,氣態(tài)向真空蒸發(fā)△S不可逆△S可逆該過程存在且自發(fā)第十四頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算【例1-13】-10℃、100kPa下,1mol水等溫凝結(jié)成等溫等壓下的冰-10℃,100kPa,液-10℃,100kPa,固△S不可逆0℃,100kPa,液0℃,100kPa,固△S可逆△S液△S固第十五頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算△S1△S5△S2△S4-10℃,P*l,液-10℃,P*s,固△S不可逆-10℃,100kPa,液-10℃,100kPa,固-10℃,P*g,氣-10℃,P*s,氣△S3可逆相變可逆相變pVT變化pVT變化pVT變化第十六頁,共五十四頁,編輯于2023年,星期二ΔS單純PVT環(huán)境熵變凝聚態(tài)變溫理想氣體相變過程可逆相變不可逆相變化學(xué)反應(yīng)1.10熵變的計算S=SpVT+S可逆相變+SpVT’第十七頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算1.10.3熱力學(xué)第三定律和化學(xué)反應(yīng)的熵變1.10.3.1熱力學(xué)第三定律能斯特?zé)岫ɡ恚?906年,德國化學(xué)家Nernst經(jīng)過系統(tǒng)地研究了低溫下凝聚體系的反應(yīng),提出了一個假定,即:凝聚系統(tǒng)在恒溫化學(xué)反應(yīng)過程中熵變隨溫度趨于0K而趨于零。用公式表示為:
或:rS(0K)=0例如:2H2(S,0K)+O2(S,0K)
=2H2O(S,0K)rSm(0K)=0第十八頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算熱力學(xué)第三定律普朗克(MPlank)假定(1912-1920年):
在0K
時純物質(zhì)
完美晶體的熵等于零。
即:S*m(完美晶體,0K)=0第十九頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算規(guī)定熵和標(biāo)準(zhǔn)熵根據(jù)絕對零度時,物質(zhì)的完美晶體的熵值為零的規(guī)定,求得該物質(zhì)在其它狀態(tài)下的熵值稱為該物質(zhì)在該狀態(tài)下的規(guī)定熵。標(biāo)準(zhǔn)態(tài)下的規(guī)定熵稱為標(biāo)準(zhǔn)熵。表示為S,1mol某物質(zhì)的標(biāo)準(zhǔn)熵為該物質(zhì)的標(biāo)準(zhǔn)摩爾熵,表示為Sm。
一般物理化學(xué)手冊上有298.2K的標(biāo)準(zhǔn)熵。第二十頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算規(guī)定熵的求法:0K(s)→10K→
Tf(s)→Tf(l)→Tb(l)→Tb(g)→T(g)可逆過程第二十一頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算1.10.3.2.標(biāo)準(zhǔn)摩爾反應(yīng)熵的計算在標(biāo)準(zhǔn)壓力下,298.15K時,各物質(zhì)的標(biāo)準(zhǔn)摩爾熵值有表可查。根據(jù)化學(xué)反應(yīng)計量方程,可以計算反應(yīng)進(jìn)度為1mol時的熵變值。第二十二頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算例題九九第二十三頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算標(biāo)準(zhǔn)摩爾反應(yīng)熵隨溫度的變化在標(biāo)準(zhǔn)壓力下,已知298.15K時的標(biāo)準(zhǔn)反應(yīng)熵變值(從查表求得),
求反應(yīng)溫度T時的熵變值。第二十四頁,共五十四頁,編輯于2023年,星期二1.10熵變的計算第二十五頁,共五十四頁,編輯于2023年,星期二熵的計算單純PVT相變過程化學(xué)反應(yīng)環(huán)境熵變凝聚態(tài)變溫理想氣體可逆相變不可逆相變S=SpVT+S可逆相變+SpVT’常溫任意溫度1.10熵變的計算第二十六頁,共五十四頁,編輯于2023年,星期二熱力學(xué)第二定律目的:解決過程的方向和限度問題數(shù)學(xué)式特定過程恒容過程:恒壓過程:熱力學(xué)基本方程派生公式麥克斯韋關(guān)系式吉~亥方程熱力學(xué)狀態(tài)方程演繹推導(dǎo)應(yīng)用化學(xué)反應(yīng)應(yīng)用熵判據(jù),適用于任何過程熵增原理,適用于絕熱過程和孤立體系熵S熱力學(xué)第三定律熵的計算S*m(完美晶體,0K)=01.11過程方向和限度的判據(jù)A和G的計算第二十七頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)為什么要定義新函數(shù)熱力學(xué)第一定律導(dǎo)出了熱力學(xué)能這個狀態(tài)函數(shù),為了處理熱化學(xué)中的問題,又定義了焓。熱力學(xué)第二定律導(dǎo)出了熵這個狀態(tài)函數(shù),但用熵作為判據(jù)時,體系必須是孤立體系,也就是說必須同時考慮體系和環(huán)境的熵變,這很不方便。通常反應(yīng)總是在等溫、等壓或等溫、等容條件下進(jìn)行,有必要引入新的熱力學(xué)函數(shù),利用體系自身狀態(tài)函數(shù)的變化,來判斷自發(fā)變化的方向和限度。第二十八頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)
dS隔離=dS系統(tǒng)+dS環(huán)境≥0(>不可逆,=可逆)對于恒溫恒容及不作其他功過程:W體積=0,W’=0Q系統(tǒng)=dU–W體積–W’=dU
dS環(huán)境=Q環(huán)境/T環(huán)境=–
Q系統(tǒng)/T=–dU/TdS隔離=dS系統(tǒng)–dU/T
≥0d(U–TS)
≤0
(<自發(fā),=平衡)定義:A=U
–TS
dAT,V,W’=0
≤0(<自發(fā),=平衡)或AT,V,W’=0
≤0(<自發(fā),=平衡)此式稱為亥姆霍茲函數(shù)判據(jù)。1.11.1亥姆霍茲函數(shù)第二十九頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)亥姆霍茲函數(shù)判據(jù)表明:
在恒溫恒容且非體積功為零的條件下,亥姆霍茲函數(shù)減少的過程能夠自動進(jìn)行,亥姆霍茲函數(shù)不變時處于平衡態(tài),不可能發(fā)生亥姆霍茲函數(shù)增大的過程。
dAT,V,W’=0
≤0(<自發(fā),=平衡)或AT,V,W’=0
≤0(<自發(fā),=平衡)此式稱為亥姆霍茲函數(shù)判據(jù)。第三十頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)
dS隔離=dS系統(tǒng)+dS環(huán)境≥0(>不可逆,=可逆)對于恒溫恒壓及不作其他功過程:W’=0Q系統(tǒng)=dH
dS環(huán)境=Q環(huán)境/T環(huán)境=–
Q系統(tǒng)/T=–dH/TdS隔離=dS系統(tǒng)–dH/T
≥0d(H–TS)
≤0
(<自發(fā),=平衡)定義:G=H
–TS
dGT,p,W’=0
≤0(<自發(fā),=平衡)或GT,p,W’=0
≤0(<自發(fā),=平衡)此式稱為吉布斯函數(shù)判據(jù)。1.11.2.吉布斯函數(shù)第三十一頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)吉布斯函數(shù)判據(jù)表明:
在恒溫恒壓且非體積功為零的條件下,吉布斯函數(shù)減少的過程能夠自動進(jìn)行,吉布斯函數(shù)不變時處于平衡態(tài),不可能發(fā)生吉布斯函數(shù)增大的過程。
dGT,p,W’=0
≤0(<自發(fā),=平衡)或GT,p,W’=0
≤0(<自發(fā),=平衡)此式稱為吉布斯函數(shù)判據(jù)。第三十二頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)對A判據(jù)和G判據(jù)的說明Siso=Ssys+Samb
≥0(>不可逆,=可逆)熵判據(jù)只能判斷可逆與否,不能判斷是否自發(fā)。
(2)恒溫恒壓反應(yīng),判據(jù)變?yōu)镚T,p<W’。(3)在恒溫恒壓,W’=0下,判據(jù)變?yōu)镚T,p,W’=0<0。
GT,p,W’=0<0
過程可以進(jìn)行,且不可逆,即自發(fā)GT,p,W’=0=0系統(tǒng)不發(fā)生變化,平衡態(tài)GT,p,W’=0>0不可能發(fā)生第三十三頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)標(biāo)準(zhǔn)態(tài)化學(xué)反應(yīng):aA+bB=cC+dDA標(biāo)準(zhǔn)態(tài)B標(biāo)準(zhǔn)態(tài)C標(biāo)準(zhǔn)態(tài)D標(biāo)準(zhǔn)態(tài)如果A和B減少則方向向右;如果C和D減少則方向向左;判斷反應(yīng)方向的狀態(tài)第三十四頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)非標(biāo)準(zhǔn)態(tài)化學(xué)反應(yīng):aA+bB=cC+dDA非標(biāo)準(zhǔn)態(tài)B非標(biāo)準(zhǔn)態(tài)C非標(biāo)準(zhǔn)態(tài)D非標(biāo)準(zhǔn)態(tài)如果A和B減少則方向向右;如果C和D減少則方向向左;判斷反應(yīng)方向的狀態(tài)第三十五頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)1.11.3過程方向和限度的判據(jù)(1)熵判據(jù)—適用于任何體系的任何過程恒溫過程絕熱過程(2)亥姆霍茲函數(shù)判據(jù)—適用于封閉系統(tǒng)的恒溫恒容、非體積功為零的過程(3)吉布斯函數(shù)判據(jù)—適用于封閉系統(tǒng)的恒溫恒壓、非體積功為零的過程2013.9.30第三十六頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)以吉布斯函數(shù)判據(jù)為例①恒溫、恒壓、W’=0過程,一切可以發(fā)生的過程,其G一定向減小的方向進(jìn)行,即ΔG<0,而ΔG>0的過程不存在。②恒溫、恒壓、W’≠0過程,ΔG>0的過程也能存在,但必須有非體積功的參與。③對于恒溫、恒壓、W’=0下的化學(xué)反應(yīng)或相變過程,當(dāng)始終態(tài)的G相等時,正反方向進(jìn)行的速度相等,達(dá)到平衡。平衡狀態(tài)不自發(fā)過程第三十七頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)恒溫過程絕熱過程隔離系統(tǒng)熵增原理最大功原理最大有用功原理亥姆霍茲函數(shù)判據(jù)吉布斯函數(shù)判據(jù)熵判據(jù)第三十八頁,共五十四頁,編輯于2023年,星期二熱力學(xué)第二定律目的:解決過程的方向和限度問題數(shù)學(xué)式特定過程恒容過程:恒壓過程:熱力學(xué)基本方程派生公式麥克斯韋關(guān)系式吉~亥方程熱力學(xué)狀態(tài)方程演繹推導(dǎo)應(yīng)用化學(xué)反應(yīng)應(yīng)用熵判據(jù),適用于任何過程熵增原理,適用于絕熱過程和孤立體系熵S熱力學(xué)第三定律熵的計算S*m(完美晶體,0K)=01.11過程方向和限度的判據(jù)A和G的計算第三十九頁,共五十四頁,編輯于2023年,星期二G的計算單純PVT相變過程化學(xué)反應(yīng)凝聚態(tài)等溫變壓過程理想氣體等溫變壓過程可逆相變不可逆相變常溫反應(yīng)任意溫度1.11過程方向和限度的判據(jù)常溫非標(biāo)準(zhǔn)態(tài)常溫標(biāo)準(zhǔn)態(tài)任意溫度非標(biāo)準(zhǔn)態(tài)任意溫度標(biāo)準(zhǔn)態(tài)第四十頁,共五十四頁,編輯于2023年,星期二1.11.4.化學(xué)反應(yīng)的G的計算(恒溫化學(xué)反應(yīng))化學(xué)變化:按照定義rG?m=r(H?m–
TS?m)=rH?m–
r(TS?m)
恒溫rG?m=rH?m–
TrS?m
用rG?m
表示標(biāo)準(zhǔn)摩爾反應(yīng)吉布斯函數(shù):各反應(yīng)組分都處于標(biāo)準(zhǔn)態(tài)下的摩爾反應(yīng)吉布斯函數(shù),也稱為標(biāo)準(zhǔn)摩爾吉布斯函數(shù)變。1.11過程方向和限度的判據(jù)第四十一頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)25℃下的fG?m可由附錄中查出,由此可計算出25℃下的rG?m。(1)用標(biāo)準(zhǔn)摩爾生成吉布斯函數(shù)計算298.15K的rG?m:
標(biāo)準(zhǔn)摩爾生成吉布斯函數(shù):在標(biāo)準(zhǔn)狀態(tài)下,由熱力學(xué)穩(wěn)定單質(zhì)生成一摩爾某化合物的吉布斯函數(shù)的變化,用fG?m表示:(2)用rH?m與rS?m計算298.15K的rG?m:
rG?m(298.15K)
=rH?m(298.15K)
–
298.15
×rS?m(298.15K)
第四十二頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)(3)計算TK的rG?m:
rG?m(T)
=rH?m(T)
–
T
×rS?m(T)
rG?m(T)=
rH?m(298.15K)
–
T
×rS?m(298.15K)
第四十三頁,共五十四頁,編輯于2023年,星期二1.11過程方向和限度的判據(jù)物質(zhì)的標(biāo)準(zhǔn)熱力學(xué)函數(shù)(298.15K,100MPa)物質(zhì)
ab×103b×106C(石)005.6948.6617.154.27298~2300C(金)1.8962.8662.4396.079.1213.22298~1200H2O,g-241.82-228.58188.82333.57130.1211.3H2O,l-285.84-237.1469.94075.296H2O,s-291.85-234.0339.4利用表中數(shù)據(jù)可直接計算25℃時反應(yīng)的ΔrHm°,ΔrSm°,ΔrGm°1.11.5利用手冊數(shù)據(jù)標(biāo)準(zhǔn)摩爾反應(yīng)熱力學(xué)函數(shù)第四十四頁,共五十四頁,編輯于2023年,星期二1.1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務(wù)合同付款管理制度
- 補充合同約定模版
- 保險合同內(nèi)部審計管理辦法
- 山西省2024八年級物理上冊第六章質(zhì)量與密度中考聚焦課件新版新人教版
- 深圳市中薈高級中學(xué)2024-2025學(xué)年高三上學(xué)期期中考試數(shù)學(xué)參考答案
- 山東省濟寧市2024-2025學(xué)年高三上學(xué)期期中考試 政治 (含答案)
- 吉林省長春市農(nóng)安縣2024-2025學(xué)年七年級上學(xué)期10月期中考試英語試卷(含解析)
- 2025新課改-高中物理-選修第1冊(21講)20 B實驗:用雙縫干涉測量光的波長 中檔版含答案
- 2024-2025學(xué)年南通市海安市初二年級第一學(xué)期八上物理期中試卷
- 異步發(fā)電機相關(guān)行業(yè)投資方案
- 小品劇本——《打工奇遇》【精選】
- 國華定洲發(fā)電廠二期工程創(chuàng)優(yōu)規(guī)劃
- 高級孔板閥操作維護手冊
- 消防監(jiān)控系統(tǒng)維護保養(yǎng)及巡檢管理制度
- 齒輪減速器的結(jié)構(gòu)認(rèn)識及拆裝
- 《IQC培訓(xùn)資料》PPT課件.ppt
- 《人民防空工程質(zhì)量驗收與評價標(biāo)準(zhǔn)》(RFJ01-2015)
- 煤焦油水分、密度的測定方法
- 方格紙,申論答題卡A4打印模板
- 第七章氣相色譜法PPT課件
- 西師大版一年級數(shù)學(xué)上冊應(yīng)用題與解決問題專項表
評論
0/150
提交評論