![能源轉型時代的能源網(wǎng)絡-Energy Networks in the Energy Transition Era_第1頁](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e31.gif)
![能源轉型時代的能源網(wǎng)絡-Energy Networks in the Energy Transition Era_第2頁](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e32.gif)
![能源轉型時代的能源網(wǎng)絡-Energy Networks in the Energy Transition Era_第3頁](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e33.gif)
![能源轉型時代的能源網(wǎng)絡-Energy Networks in the Energy Transition Era_第4頁](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e34.gif)
![能源轉型時代的能源網(wǎng)絡-Energy Networks in the Energy Transition Era_第5頁](http://file4.renrendoc.com/view/bc4d91be0a5e5e3fb1b201901dfc60e3/bc4d91be0a5e5e3fb1b201901dfc60e35.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
May2022
EnergyNetworksintheEnergyTransitionEra
OIESPaper:EL48RahmatallahPoudineh,SeniorResearchFellow,OIES
i
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonot
necessarilyrepresenttheviewsoftheOxfordInstituteforEnergyStudiesoranyof
itsmembers.
Copyright?2022
OxfordInstituteforEnergyStudies
(RegisteredCharity,No.286084)
Thispublicationmaybereproducedinpartforeducationalornon-profitpurposeswithoutspecial
permissionfromthecopyrightholder,providedacknowledgmentofthesourceismade.Nouseofthis
publicationmaybemadeforresaleorforanyothercommercialpurposewhatsoeverwithoutprior
permissioninwritingfromtheOxfordInstituteforEnergyStudies.
ISBN978-1-78467-199-0
ii
Abstract
Asinfrastructuresthatconnecttheenergysourcewiththeenergyuse,energynetworksconstituteacrucialelementofnationalandglobalenergysystems.Theyalsoplayakeyroleinhelpingwithbalancingsupplyanddemand,thusensuringthatenergyisnotonlyavailableintherightplacesbutalsoattherighttime.Energytransitionwillhavesignificantimpacts,thoughnotnecessarilyinthesameway,onexistingenergynetworks,forexample,electricityandnaturalgasgrids,andmightleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcoolingandthedeploymentofnewinfrastructurestosupporttheuseofhydrogen.Understandingtheimplicationsofenergytransitionforenergynetworks,andthewaysinwhichtheseinfrastructuresshouldadapttothechallengesofdecarbonization,isimportanttoachievenet-zerocarbonobjectives.Thispaperexploressomeofthekeyissuesfacedbyelectricitytransmissionanddistributionnetworks;naturalgasnetworks;andfuturehydrogen,heating,andcoolingnetworksinthetransitionofenergysystems.Also,asfuturedecarbonizedenergysystemsarelikelytoexhibitsignificantlymoreinteractionbetweendifferentpartsofthesystem,thispaperexplorespossibleapproachestoutilizingthesynergiesbetweenenergynetworksandbenefitingfromtheirintegratedoperationtolowerthecostsandchallengesofdecarbonization.
iii
Contents
Abstract ii
Figures iii
Tables iii
1.Introduction 1
2.Energynetworks 2
2.1Electricitytransmissionnetworks 2
2.1.1Theeffectofmarketdesign 5
2.1.2Electricitydistributionnetworks 5
2.2Naturalgasnetworks 8
2.3Hydrogennetwork 11
2.4Heatingandcoolingnetworks 12
3.Integratedenergynetworks 16
4.Summaryandconclusions 19
References 22
Figures
Figure1:Naturalgasinprimaryenergyinglobalwholeenergysystemscenariosthatmeeta1.5°C
warmingtarget 9
Figure2:YearlyheatdemandintheUKacrosssectors(2019) 13
Figure3:Globalenergyconsumptionforspacecoolinginbuildings 15
Figure4:Shareofheating/coolingdemandmetthroughdistrictenergysystemsinselectedcountries 15
Figure5:Threelayersofanintegratedapproachtonetworkplanningandoperation 17
Figure6:IllustrativepossibleinteractionsbetweendifferentenergynetworksintheUK 18
Tables
Table1:Transformationoftheelectricitysystemanditsimplications 3
Table2:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions 4
1
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
1.Introduction
Energynetworksareinfrastructuresthatconnecttheenergysourcewiththeenergyuseandthusconstituteacrucialelementofnationalandglobalenergysystems.Overthelasthundredyears,thenetworks(especiallyelectricityandgas)haveevolvedfromlocalsimplegridsintocomplexinfrastructuresthattransferenergynotonlywithinnationalboundariesbutalsoacrossbordersinareliableandefficientmanner.
Thenet-zerocarbontargetwillresultinasignificantchangeinenergysystemswithsignificantimplicationsforexistingenergynetworks.Itmayalsoleadtothegrowthofnewenergycarriersystems,suchasdistrictheatingandcooling,andpotentiallygiverisetonewinfrastructuretosupportthedeliveryanduseofhydrogen.
Theelectricitynetworks,inparticular,arefacingsignificantchangesasaresultofthetransformationcurrentlyunderwayintheenergysystem.Electricityisthefastestgrowingconsumerenergybecauseoftherolethatitisexpectedtoplayinthedecarbonizationofthetransport,buildingandindustrialsectors.Traditionally,electricitywasgeneratedinlargecentralizedthermalorhydropowerplants,whichfeedintoatransmissiongridthatconnectsindustrialloadsandsuppliessmallerconsumersthroughdistributiongrids(IEA,2021).Thedesignoftransmissiongridswassuchthatpowerflowsbetweenpowerplantsandmainconsumptioncentreswithinaspecificregionwereeasilyaccommodatedwithoutstructuralcongestion.However,renewableenergyresourcessuchasonshorewindfarms,utility-scalesolarfacilities,andoffshorewindfarmsareoftenlocatedfarfromloadcentres,whilethermalgenerationplantsareeitherbeingphasedoutorforcedoutofthemarketbycheaprenewables.Atthesametime,thereisahugegrowthinsmallerdistributedenergyresources(DERs)onthedistributiongrid.Thesedevelopmentswillchangetheflowpatternwithintheelectricitynetworksandmaycreatenewconstraints,andthusnecessitatemoreefficientutilizationofexistinggridassets,newgridinvestments,andinsomecasesevennewoverallgridandelectricitymarketdesigns.
TheriseofDERs,andthedecentralizationparadigminparticularisupendingthebalancebetweentheelectricitytransmissionanddistributionsectors.Distributiongrids,whichhavehistoricallybeenpassiveandaddressedgridconstraintsthroughoverengineering,arenowbecomingmoreactive.Alongwiththeneedfornewrules,thisalsomeansnewrolesfordistributionsystemoperators(DSOs)tofacilitateefficientintegrationofDERswhileachievingahigherlevelofcoordinationwiththetransmissionsystemoperator(TSO).ThisistoimprovevisibilityandcontroloverDERsandavoidpotentialconflictbetweenDSOsandtheTSO.
Apartfromelectricity,naturalgasisanothermajorenergynetworkinmanycountries.However,thefutureofthenaturalgasgridisuncertain,especiallyatthelow-pressuredistributionlevel.Itpartlydependsonfutureenergyservicescenariosinwhichnaturalgasisprimarilyused,forexample,forheating,andpartlyonthetechnologicalprogressmadetolowerthecostsofcarboncaptureandstorage.Theuseofnaturalgasnetworksmustchangeifthesenetworksaretoplayaroleunderthenet-zerocarbonobjective.Low-carbonalternativessuchashydrogenareapotentialreplacementfornaturalgasbutarangeofchallengesexists.Forexample,astheshareofnaturalgasdeclines,availablevolumesofhydrogenmaynotbesufficienttojustifyadjustingtheexistingnaturalgasinfrastructures.Also,hydrogencanbetransportednotonlyviaarepurposedgasnetwork(ornewpipeline),butalsoviaavailablepowerandtransportationnetworks,suchasbyrail,road,andonwaterways.Thismeansthat,despitetheefficiencyofpipelines,repurposingthegasnetworkmightnotalwaysbetheoptimalsolution.
Thereareotherenergynetworksemergingtoaddressthechallengesofdecarbonizingtheheatingandcoolingsectors.Heatnetworkscurrentlyhavelittleenergydemandmarketsharegloballybut,giventheiradvantageoverindividualheatingsystemsandalsothegrowingurgencyofdecarbonizingheatinginthebuildingsector,theirshareisexpectedtoincrease.IntheUK,forexample,theenergydemand
2
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
forheatingaccountsformorethan40percentofallenergyuseandcontributestoaroundone-thirdofcarbonemissions.Underfavourableregulatoryandpolicyconditions,districtheatingcouldbecomethemainmethodofprovidingheattobuildingsinhigh-densitybuiltenvironments,suchascitycentresandcampuses,aswellassomeruraloff-gasgridcommunitiesinthiscountry.
Coolingnetworksarelesscommoncomparedwithdistrictheating,butwiththeriseindemandforspacecoolingintheGlobalSouththesenetworksmayalsogainmoreimportance.IntheUnitedArabEmirates,districtcoolingcurrentlyprovidesmorethanone-fifthofthecoolingload(IRENA,2017b).Theeconomiesofscaleandincreasedefficiencyofprovidingcentralizedspacecooling,comparedwithindividualair-conditioningsystems,canreducetheircostssignificantly.Similartodistrictheating,districtcoolingalsorequiresappropriatepoliciesandregulationstofacilitateitsdeploymentinplaceswithhigh-loaddensity.
Asenergysystemsbecomemorecomplexduetodecarbonization,decentralizationanddigitalizationtrends,theimportanceofenergynetworksascriticalinfrastructuresthatexploitandfacilitatetemporalandspatialdiversityinenergyproductionandconsumptionincreases.Itisthusnecessarytounderstandhowbesttodesign,regulate,integrateandoperateexistingandemergingenergynetworksinordertobenefittheentireenergysystem.Currently,energynetworks,whethertheybeelectricity,gas,heatingorcooling,arecommonlyplannedandoperatedindependently,whichresultsinalossofsynergiesandefficiency(Hosseini,2020).Theseseparateinfrastructuresarenowincreasinglybecominginterconnectedthroughnetworkcouplingtechnologies,suchascombinedcyclegasturbines(CCGT);combinedheatandpowerunits(CHP);andpower-to-Xtechnologies,suchashydrogen,ammonia,heating,cooling,andheatpumps.Anintegratedapproachtotheplanningandoperationofthesenetworkscanlowertheuseofprimaryenergy,provideflexibilitytointegratevariablerenewableenergyresourcesandlowerthecostofachievinganet-zerotarget.Thishoweverentailsaddressingarangeofoperational,regulatory,andgovernanceissues.1
Theoutlineofthispaperisasfollows:Section2discussesissueswhichindividualenergynetworksarefacingduringtheenergytransition,startingwithelectricitytransmissionanddistributiongridsthengoingontonaturalgasandhydrogengridsandfinishingwithheatingandcoolingnetworks.Section3discussestheideaofanintegratedenergynetwork.Finally,Section4providesasummaryandconclusions.
2.Energynetworks
Energynetworksareinfrastructuresthattransferenergyfromtheproductionsourcetotheconsumers’premises.Theyconstitutevariousformsoftechnologiesrangingfromestablishednetworks,suchaselectricityandnaturalgas,toemerginggrids,suchashydrogen,heating,andcooling.Inthissection,webrieflyrevieweachofthesenetworksandhighlightthechallengesandopportunitiestheyfaceasaresultoftheenergytransition.
2.1Electricitytransmissionnetworks
Aswemovetowardsanet-zerocarboneconomy,theelectricitysectorisexperiencingaprofoundtransformation(BEIS,2021a).Onthesupplyside,theriseofrenewableenergyresourceshasledtopowergenerationbecomingincreasinglyvariableanduncertainwhilethepenetrationofDERsimpliesashiftofvaluefromtransmissiontothedistributionlevelduetodecentralization.Onthedemandside,electricitydemandisnotonlyexpectedtorise,duetotheincreasedelectrificationofactivitiesandprocesses,butmayalsobecomemoreuncertainbecauseofthenatureofnewlyelectrifiedactivities
1Theseincludeeconomicissues,suchascoordinationinthepresenceoffragmentedinstitutionalandmarketstructuresofdifferentenergysystems,aswelltechnicalchallenges,suchaspreventingcascadingfailures,loweringvulnerability,andimprovingtheresilienceofintegratedenergynetworks(Tayloretal.,2022).
3
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
(forexample,electricvehiclescanpotentiallychargeatanytimeandatanylocationonthenetwork).Inaddition,networkusersarebecomingmoreactiveasdigitalizationandautomationlowerthetransactioncostsofinteractingwiththeelectricitysystem.Theseallhaveimplicationsfortheentireelectricitysystem,includingthenetworkinfrastructure(seeTable1).
Table1:Transformationoftheelectricitysystemanditsimplications
Transformationofthepowersystem
Generation
Variableanduncertainrenewablegeneration
Distributedenergyresources
Energystorage
Electricitydemand
Theriseofelectricityconsumption(e.g.datacentres,
electricvehicles,heatpumps,air-conditioning)
Increaseinuncertaintyofdemand
Networkusers
Activenetworkusers(sumers,energy
communities)
Communicationandcontrol
Digitalizationandautomation
Implicationsforthepowersystem
Initialfocus
Presentfocus
Planning
Renewable
generation
Capacitygrowth
Systeminteraction,integrationcosts
Network
infrastructure
Sufficientcapacitytoaccommodateallusers
Market-basedanddifferentiatedgridaccessregime,competition,costallocation,coordinationwithgeneration
Operation
Reliabilityoperationalsecurity
and
Throughmarket
energy-only
Searchfornewparadigm
Flexibility
Fromconventionalpowerplants
Newsolutions(e.g.DERs,demandresponse,energystorage)andnewincentivesandframeworksforflexibleservices
Source:author
Indeed,adifferentelectricitynetworkisneededcomparedtowhatwehadinthepast.Electricitynetworksrequirehighercapacityandinterconnectionsaswellasmoreefficientapproachestocaterfortheriseintheelectricitydemandandtheincreasedcomplexityandchallengeinasystembalancingsupplyanddemand.
Althoughdecentralizationimpliesthatanincreasinglyhigherproportionofgenerationfacilitiesarelocatedonthedistributionside,significantinvestmentinthetransmissionnetworksisstillrequiredduetothediversegeographicallocationofnewmajorresources,suchasonshoreandoffshorewindfarms,aswellastheincreasedneedforinterconnectivitybetweenelectricitymarkets.
Therearetwoimportantpointswhenitcomestoexpandingthetransmissiongrid.First,thedesignandconstructionofnewtransmissionassetsisacomplexandcostlyprocesswithalongleadtime.Second,thereisstilluncertaintyaboutthetimingandpaceofdecarbonizationofheatingandtransportaswellastheextenttowhichelectrificationcanoutcompetealternativeoptionsinallapplicationsoftheseservices.Thissuggeststhatfuturenetworkinvestmentsneedtoberobustinthefaceofarangeofpossibletransitionpathwayoutcomesforthesetwosectors.
Akeyconcernassociatedwithtraditionalnetworkinvestmentmodelsisrelatedtoeconomicefficiencyandtheirnarrowfocusonasset-basedsolutions,withoutconsideringthefactthatwhilegridexpansioniscrucial,lowercostsandtimelysolutionsmustbeaddressedfirst.Asanexample,consideraregion
4
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
inwhichthereisanexcesssupplyofwindgenerationbutlowdemandduetolowerpopulationdensity,whichresultsinatransmissionconstraint.Thestandardsolutiontothischallengeinthepasthasbeentoaddanewwirethatconnectstheareawherethereisovergenerationtothenearesthighdemandcentre.AsseeninTable2,thedeploymentofanewtransmissionlineisoneoffivepossiblesolutionsforthisproblem.Indeed,thisproblemcanbesolvedbyabattery;anaggregator;avoltageserviceprovider;orasinglelargeindustrialdemand,suchasanelectrolyser,whichcanabsorbtheovergeneration.
Table1:Anexampleofatransmissionconstraintandtherangeofpossiblesolutions
Transmissionconstraintexample:thereisahighlevelofwindpowergenerationinanareawithlowerdemand
Solution1:addingawiretoconnectthehighsupplyareatoanareaofhighdemand
Solution2:deployingabatterythatstoresenergywhensupplyishighandreleasesitbacktothegridwhendemandishigh
Solution3:anaggregatorwhichcanaggregatedemandwiththeabilitytoturnitupordownwhenneededtomatchthesupply
Solution4:avoltageserviceproviderthatcanrespondtotheparticularchallengeofasurgeinelectricitysupplyasresultofasuddenincreaseinwindgeneration
Solution5:asinglelargeindustrialdemand,suchaselectrolysers,whichcanreacttowindpowergenerationsurges
Source:adaptedfromBEIS(2021a)
Theproblemisthatwhennetworkcompaniesarenotincentivizedtoconsiderwidersolutionstogridconstraints,Solution1isalmostalwaysthepreferredchoiceevenifitiseconomicallyinefficient.Thisisbecausenetworkcompanieshaveabiastowardsasset-basedsolutionsasnoneoftheotherapproachesincreasethenetworkcompany’sregulatoryassetbase,thusallowingittoreceiveareturn.Onthecontrary,implementingothersolutionsmayevenresultinlowerrevenueforthenetworkcompanyifthevolumeofenergytransportedinthegriddeclines.
Thisisspecificallythecasewhenthenetworkoperatorandnetworkownerarethesameorganizationandwasoneofthereasonsthat,intheUK,theNationalGridElectricitySystemOperator(NGESO)waslegallyseparatedfromthetransmissionowner,NationalGridElectricityTransmission(NGET),althoughtheybothbelongtothesamegroup—theNationalGrid(NG)Group.Therearenowdiscussionstogoevenfurtherandestablishanindependentenergysystemoperatorwhichhasabsolutelynointerestinregulatedelectricityandgasassets.
Therefore,aligningtheincentiveofthenetworkcompaniesiscriticaltoachieveinvestmentefficiency.Althoughthemarketfornon-networksolutionsatthetransmissionlevelmightnotbewell-developedattheoutset,theintroductionofspecificincentivescanencouragethird-partyproviderstoinnovateandgrow,especiallyasthetechnologyadvances.
Theincreaseintherangeofsolutionsalsoallowsforthepossibilityofutilizingmarketmechanismsandcompetitioninasupplychainsegmentthathastraditionallybeenconsideredasanaturalmonopoly.However,giventhatthetypeofnetworkconstraintaffectstherangeofsolutionsavailabletofixthem,anauctionfortheprocurementofsolutionscanbearrangedindifferentways.Sometimesanetworkconstraintmayhaveaclearuniquesolutionandothertimestheremightbearangeofpossiblesolutions.Thus,thecompetitiontoprocurenetworkservicesneedstoaccountfortheseidiosyncrasiesinthetypeofnetworkconstraintsandassociatedsolutions.IntheUK,withdiscussionsaboutintroducingcompetitioninonshoretransmissionnetworks,theregulatoristryingtodesignacompetitionframeworkthataccommodatesthesecomplexities.‘Earlycompetition’issuggestedincaseswhereagridconstraintisidentifiedbutthetenderhappenspriortothesurvey,consent,anddetaileddesignoftheassetbeingdevelopedsothewholeprocessofdesigning,constructing,anddeliveringthesolutionis
5
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
tenderedfor(BEIS,2021).Thisistoallowforthefactthattheelectricitysystemischangingandmoresolutionsmightbecomeavailablebythetimethetenderhappens.The‘latecompetition’modelisproposedwhenthenetworkproblemisidentifiedandthesolutionisdecidedsothecompetitiontakesplacetobuild,own,andoperatetheagreedsolution.
Despitetheappealofacompetitionforatransmissionnetworkinfrastructure,therearesomeimportantissuesthatneedtobeconsideredforthechoiceofsolutionandtheassociatedauction.First,theleadtimeoftransmissionprojectsishigh,whilethechangeinthegenerationanddemandpatternsisveryuncertaingivencurrentdevelopmentsintheelectricitysector.Thissuggeststhattheneedforactualtransmissioninvestmentcanalterbythetimeaprojectisdelivered.Second,thereisahighlevelofuncertaintyinthecostoftransmissionprojectsandtherearemanyfactors,suchasmeetingplanningrequirements,thatcanaffecttheoutturncostbutcannotbefullyaccountedforatthetimeofdecision.Third,theeffectoftheseproceduresonothercompetitionmechanisms,suchasthoserelatedtosystemservices(runbytheelectricitysystemoperator)orflexibilitytenders(runbythedistributionnetworkoperator),needtobecarefullyexamined.Therefore,introducingcompetitionfortheprocurementofnetworkservicesrequirescarefuldesignandimplementation.
2.1.1Theeffectofmarketdesign
Thediscussionaboutnetworkoperationanddevelopmentcannotbedecoupledfromthedebateonthedesignoftheelectricitymarket.Theriseofvariableanduncertaingeneration,andthefactthattherenewableresourcesareoftenlocatedawayfromtheloadcentre,willchangetheexistingpatternsofflowinelectricitynetworksandthusresultinnewconstraints.Thechallengeisthatlocalcongestion,whetherintransmissionordistribution,isnotreflectedinelectricitymarketpricesinmostplacesaroundtheworldduetothesuboptimaldesignoftheelectricitymarket.Europeanelectricitymarkets,forexample,arestructuredaroundbiddingzones,whichmeansintrazonalcongestioncanbecomeapersistentchallenge.Currently,transmissionsystem’sconstraintsaremanagedbycost-basedormarket-basedregulatedredispatchoftheflexibilityresourcesinthezone.However,thiscanattimesbeverycostly.
Thekeychoicestoaddresstransmissioncongestion,inthecontextoftheEuropeanelectricitymarketdesign,areeithertoexpandthenetworkortoreconfigurebiddingzonessuchthattheyreflecttheactualstructuralcongestion.Networkexpansionisnotalwaysthemostcost-efficientsolution.Furthermore,thereisnoguaranteethatinthefuturenewstructuralcongestionwouldnotariseafterthenetworkhasbeenexpanded.Animprovedzonalmodelwithadequatedemarcationofbiddingzonescanbeacheapersolutionthannetworkreinforcement.However,apartfromthechallengesofimplementingawell-definedbiddingzone,itisalsosusceptibletoso-calledincrease-decrease(inc-dec)gamingopportunities.
Fromamarketdesignperspective,locationalmarginalpricing(LMP),alsocallednodalpricing,istheoptimumapproachtoutilizethegridefficiently.Inthismodel,thepriceateachnodeofthegridrepresentstheactualcostofsupplyingthatparticularnodegiventhenetworkconstraint.Thus,unlikezonalpricing,LMPtakesintoaccountthephysicalcharacteristicsofthegridwhichmeansno‘outofmarket’instrumentsarerequiredtoaddresscongestion,meaningthereisnoneedforredispatchofflexibilityservices.Itisalsolessvulnerableto‘inc-dec’games.Nonetheless,theimplementationofLMPinthecontextoftheEuropeanelectricitymarketisunlikelytobestraightforwardassuchashiftwouldimplymajorchangesformoststakeholdersinthemarket.
2.1.2Electricitydistributionnetworks
Electricitydistributionnetworksareexpectedtobearthebruntoffurtherelectrificationoftransportandheatingservices.Theiroperatingenvironmentisalsofast-changingduetotherapidgrowthofDERsandtheriseofprosumers.Asaresult,thesenetworksneedtooperateunderconditionsofincreasedvariableloadandgenerationaswellasmorefrequentcongestion.Therearethreeregulatory
6
Thecontentsofthispaperaretheauthor’ssoleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
instrumentsthatplayacriticalroleinaddressingthechallengesthatdistributionnetworksfaceduringthetransitionera(Gómezetal.,2020).
Thefirstinstrumentisthegridaccessregime.Traditionallygridaccess,forbothconsumersandgenerators,isprovidedonafirmbasis.Thefirmaccessmodelallowsuserstowithdrawand/orinjecttothenetworkuptothemaximumcapacity2oftheinstalledfuseatanytimeorlocation.Despiteitssimplicitygivenlackofneedforreal-timemanagementofinjectionsandwithdrawalbythegridoperator,firmaccessisaninefficientapproach.Thisisbecause,underthisregime,alargepartofthenetworkcapacityisidleasnetworkcomponentsareoftenusedattheirratedvalueonlyforverylimitedtimesoftheyear.Firmaccessalsopreventsnewusersfrombeingconnectedwheneveryuserisgivenagridaccessoptionattheirmaximumratedcapacity.
Anon-firmoraflexibleaccessregime,ontheotherhand,isbetteralignedwiththerequirementforfastandefficientgridconnectioninanelectricitysystemwhichisexperiencingrapidgrowthofrenewableanddistributedenergyresources.Aflexibleconnectionprovidesthenetworkoperatorwiththerighttomanagetheuserfeed-inorconsumptioninexchangeforincentivessuchasdirectrenumeration,arebateongridconnectioncosts,fasterconnection,orsimplytherighttoconnectratherthanrefuseacustomer’sconnectionapplication.Inthisway,theneedforfurthernetworkreinforcementdeclinesandmoreuserscanbeac
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)維修手表合同范例
- ppp咨詢費合同范本
- 分裝白糖采購合同范本
- 內墻抹灰工程合同范例
- 公司無償贈與合同范例
- 喪葬工具出租合同范本
- 2025年度臨時活動場地租賃合同
- 2025年度教育產(chǎn)業(yè)借款反擔保協(xié)議范本
- 2025年度客運企業(yè)品牌戰(zhàn)略規(guī)劃與實施服務合同
- 2025年消毒滅菌設備器具項目投資分析及可行性報告
- 天津市河西區(qū)2024-2025學年四年級(上)期末語文試卷(含答案)
- 2025年空白離婚協(xié)議書
- 校長在行政會上總結講話結合新課標精神給學校管理提出3點建議
- T-CSUS 69-2024 智慧水務技術標準
- 2025年護理質量與安全管理工作計劃
- 湖南大學 嵌入式開發(fā)與應用(張自紅)教案
- 地下商業(yè)街的規(guī)劃設計
- 長安大學《畫法幾何與機械制圖一》2021-2022學年第一學期期末試卷
- 2024-2030年全球及中國低密度聚乙烯(LDPE)行業(yè)需求動態(tài)及未來發(fā)展趨勢預測報告
- 醫(yī)院物業(yè)管理制度
- 初中數(shù)學思維訓練雙十字相乘法因式分解練習100道及答案
評論
0/150
提交評論