版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高階線性微分方程第六節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)
*四、常數(shù)變易法
一、二階線性微分方程舉例
第七章.一、二階線性微分方程舉例當重力與彈性力抵消時,物體處于平衡狀態(tài),例1.質(zhì)量為m的物體自由懸掛在一端固定的彈簧上,力作用下作往復運動,解:阻力的大小與運動速度下拉物體使它離開平衡位置后放開,若用手向物體在彈性力與阻取平衡時物體的位置為坐標原點,建立坐標系如圖.設時刻
t
物位移為x(t).(1)自由振動情況.彈性恢復力物體所受的力有:(虎克定律)成正比,方向相反.建立位移滿足的微分方程..據(jù)牛頓第二定律得則得有阻尼自由振動方程:阻力(2)強迫振動情況.若物體在運動過程中還受鉛直外力則得強迫振動方程:.求電容器兩兩極板間電壓例2.
聯(lián)組成的電路,其中R,L,C
為常數(shù),所滿足的微分方程.解:
設電路中電流為i(t),的電量為q(t),自感電動勢為由電學知根據(jù)回路電壓定律:設有一個電阻R,自感L,電容C和電源E串極板上在閉合回路中,所有支路上的電壓降為0‖~.串聯(lián)電路的振蕩方程:化為關(guān)于的方程:故有‖~如果電容器充電后撤去電源(E=0),則得.n
階線性微分方程的一般形式為方程的共性
(二階線性微分方程)例1例2—可歸結(jié)為同一形式:時,稱為非齊次方程;時,稱為齊次方程.復習:
一階線性方程通解:非齊次方程特解齊次方程通解Y.證畢二、線性齊次方程解的結(jié)構(gòu)是二階線性齊次方程的兩個解,也是該方程的解.證:代入方程左邊,得(疊加原理)
定理1..說明:不一定是所給二階方程的通解.例如,是某二階齊次方程的解,也是齊次方程的解并不是通解但是則為解決通解的判別問題,下面引入函數(shù)的線性相關(guān)與線性無關(guān)概念..定義:是定義在區(qū)間I
上的
n個函數(shù),使得則稱這
n個函數(shù)在I
上線性相關(guān),否則稱為線性無關(guān).例如,
在(,)上都有故它們在任何區(qū)間I
上都線性相關(guān);又如,若在某區(qū)間
I
上則根據(jù)二次多項式至多只有兩個零點,必需全為0,可見在任何區(qū)間
I
上都線性無關(guān).若存在不全為
0
的常數(shù).兩個函數(shù)在區(qū)間I
上線性相關(guān)與線性無關(guān)的充要條件:線性相關(guān)存在不全為0的使(無妨設線性無關(guān)常數(shù)思考:中有一個恒為0,則必線性相關(guān)(證明略)線性無關(guān).定理2.是二階線性齊次方程的兩個線性無關(guān)特解,數(shù))是該方程的通解.例如,方程有特解且常數(shù),故方程的通解為(自證)
推論.是
n
階齊次方程的n
個線性無關(guān)解,則方程的通解為則.三、線性非齊次方程解的結(jié)構(gòu)
是二階非齊次方程的一個特解,Y(x)是相應齊次方程的通解,定理3.則是非齊次方程的通解.證:
將代入方程①左端,得②①.是非齊次方程的解,又Y中含有兩個獨立任意常數(shù),例如,
方程有特解對應齊次方程有通解因此該方程的通解為證畢因而②也是通解..定理4.分別是方程的特解,是方程的特解.(非齊次方程之解的疊加原理)定理3,定理4均可推廣到n
階線性非齊次方程..定理5.是對應齊次方程的n
個線性無關(guān)特解,給定n
階非齊次線性方程是非齊次方程的特解,則非齊次方程的通解為齊次方程通解非齊次方程特解.常數(shù),則該方程的通解是().設線性無關(guān)函數(shù)都是二階非齊次線性方程的解,是任意例3.提示:都是對應齊次方程的解,二者線性無關(guān).(反證法可證).例4.
已知微分方程個解求此方程滿足初始條件的特解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024中國銀行國家助學貸款保證合同
- 2024室內(nèi)裝修施工合同范本模板
- 2024年度軟件開發(fā)及許可協(xié)議
- 2024年度知名品牌餐飲連鎖加盟合同
- 成本制勝課件教學課件
- 2024年度供貨合同范本
- 2024年大型風力發(fā)電項目施工合同
- 2024年度市場營銷策劃與執(zhí)行合同
- 2024年建筑工地安全協(xié)議
- 2024年度醫(yī)療服務提供合同
- 人教版數(shù)學五年級上冊課本習題(題目)
- 鋼筋合格證(共6頁)
- BIM技術(shù)全過程工程管理及應用策劃方案
- 彎扭構(gòu)件制作工藝方案(共22頁)
- 水利工程填塘固基、堤身加固施工方法
- 中醫(yī)針灸的骨邊穴怎樣定位
- 人教版八年級上冊英語單詞表默寫版(直接打印)
- 電脫水、電脫鹽講解
- 江西省科技創(chuàng)新平臺建設(PPT課件)
- 違約損失率(LGD)研究
- 溝槽回填施工方案(完整版)
評論
0/150
提交評論