內(nèi)容說明講稿_第1頁
內(nèi)容說明講稿_第2頁
內(nèi)容說明講稿_第3頁
內(nèi)容說明講稿_第4頁
內(nèi)容說明講稿_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

Exercises:Determinethenumberofwaystocolorthesquaresofa1-by-nchessboard,usingthecolorsred,white,andblue,ifanevennumberofsquaresaretobecoloredredandthereisatleastoneblueLethndenotethenumberofsuchcoloringswherewedefineh0=0.Thenhnequalsthenumberofn-permutationsofamultisetofthreecolors,eachwithaninfiniterepetitionnumber,inwhichredoccursanevennumberoftimesandatleastonebluesquare.Thustheexponentialgeneratingfunctionforh0,h1,h2,h3,…h(huán)n,…istheproductofred,whiteandblue x x x x x g(x)=(1+2!+4!+…)(1+x+2!+3!+4!+…)(x+2!+3! - =2(e+e)e(e-1)=2(e-e+e- n n 2 (2

-

n!+n!- 3n2n1

Hence,h=0ifn=0andh=3n2n

ifn=1, 7.Let????????equalthenumberofdifferentwaysinwhichthesquaresofa1-by-nchessboardcanbecolored,usingthecolorsred,white,andbluesothatnotwosquaresthatarecoloredredareadjacent.Findandverifyarecurrencerelationthat????????satisfies.ThenfindaformulaforR33Ifthefirstcelliscoloredred,thenthesecondonemustbecoloredwhiteorblue,thenumberofwaystocolortheremainder(n-2)cellswillbehn?2;Ifthefirstcellisn’tcoloredred,thenthenumberofwaystocolortheremainder(n-1)cellswillbehn?1.Sothenumberofwaystocolorthencellsishn=2hn?1+2hn?2Sothecorrespondingcharacteristicequationoftheaboverecurrencerelationisx2?2x?2=0.Thesolutionoftheequationisx1=√3+1,x2=?√3+hn=c1(1+√3)n+c2(1?Andh0=1,h1=

=2+√3,

=

2+

?2+ = (√3+1)n+ (?√3+n 25.Solvethefollowingrecurrencerelationsbyusingthemethodofgeneratingfunctionsasdescribedinsection7.5(a)????????=?????????????????,(????≥????);????????=????,????????= g(x)=h0+h1x+h2x2+?+hnxn+? ?4h0x2?…?4hn?2xn+? hn=4hn?2Thusg(x)?4x2g(x)=h0+ h0=1,h1=Sog(x) =1?1 1?=1 [2n?(?2)n]

1

4n

n

hn=4 ?(?2)17Determinethegeneratingfunctionforthenumberhnofbagsoffruitofapples,oranges,bananas,andpearsinwhichthereareanevennumberofapples,atmosttwooranges,amultipleofthreenumberofbananas,andatmostonepear.Thenfindaformulaforhnfromthegeneratingfunction.Theproblemisequivalenttofindingthenumberhnofnon-negativeintegralsolutionsofe1+e2+e3+e4=n,wheree1iseven,e2is0to2,e3isamultipleofthree,and0≦e4≦1,thenitsgeneratingfunctionisg(x)(1x2x4...)(1xx2)(1x3x6...)(1 (1n1n0(n

hnn forthe numberhn non-negativeintegralsolutionof????????????+????????????+????????+????????????=Supposef1=2e1,f2=5e2,f3=e3,f4=Sowef1+f2+f3+f4= g(x)=(1+x2+x4+?)(1+x5+x10+?)(1+x1+x2+?)(1+x7+x14+?) =1?x21?x51?x1?37.LetSdenotethemultiset{∞·e1,∞·e2,……∞·ek}.Determinetheexponentialgeneratingfunctionforthe????????,????????,????????,…????????…where????????=????andforn≥(c)????????equalsthenumberofn-permutationsofSinwhich????????occursatleastonce,????????occursatleasttwice,……????????occursatleastktimes.Letthetimese1occursben1wheren1≥thetimese2occursben2wheren2≥thetimesekoccursbenkwherenk≥We n1+n2+?+nk=

g(x)=?+ +??

+??

+?

(

k+=(ex?1)?ex?1

x?…(ex?1?

??

) (k?????????.Thegeneralterm ofasequenceisapolynomialinnof 3.Ifthefirstfourentriesofthe0throwofitsdifferencetableare1,-1,3,10,determine????????andaformulafor∑???? Answer:Example(267頁),Theorem8.2.2(267)),Theorem(269Thedifferencetable - -4 6 -andthe0thdiagonalelementsequalto1,-2,6,-

nk= +6n+ ?3n+

?

?

?????????????.LetXbeap-elementsetandletYbeak-elementset.Provethatthenumberoffunctionsf:X→????whichmapXontoYequals????!????(????,????)=??#ThenumberoffunctionsequalsthenumberofpartitionsofXintoY.SinceYhaskdifferentelements,inotherwords,thenumberoffequalsthenumberofpartitionofpelementsintokdistinguishableboxesandeveryoneofthekboxesisnotempty.Hence,thenumberequalsk!S(p,k)=S#(p,????????????.Let????????,????????,…????????bedistinctpositiveintegers,andlet????????????????(????????,????????,…????????)equalthenumberofpartitionsofninwhichallpartsaretakenfrom????????,????????,…????????.Define????????=????.Showthatthegeneratingfunctionfor????????,????????,????????…????????…is?(???????????????Answer:Theorem8.3.1(283頁)證明過程Weknowtheexpressionaboveequalstheproduct(1+xt1+?+t1+?)(1+xt2+?+xa2t2+?)(1+xt3+?+xa3t3+?)Atermxnariseinthisprojectbychoosingatermxa1t1fromthefirstxa2t2fromthesecond,xa3t3fromthethird,andsoon,witha1t1++a3t3+?+amtm=n.Thuseachpartitionofncontributes1tothecoefficientofxnequalsthenumberqnofpartitionofn.Hence qnxn= (1?xtkSothegeneratingfunctionforq0,q1,q2…qn…is (1?xtk排列問題用指數(shù)生成函數(shù)13.LetfandgbethepermutationsinExercise1.Letc=(R,B,B,R,R,R)beacoloringof1,2,3,4,5,6withthecolorsRandB.Determinethefollowingactionsonc:??????????Asc=(R,B,B,R,R,R),f

12345 64215

andg

13

3462

,thencan- 12345 - =43

.For25

,1->4,2->3…then4colorR,3colorB…1B,assameasforf-1*c=(RRBRRg*c=(RRRRB20.UseTheorem14.2.3todeterminethenumberofinequivalentcoloringsofthecornersofatrianglewhichisisoscelesbutnotequilalwiththecolorsredandblue.Withpcolors(cf.Exercise4)1 Firstly,wecandrawagraphasThepermutationgrouphastwo

So,accordingtothetheoremofBurnside,we23+N =2Ifweusepcolorsforcoloring,wecansimilarlyhavethep3+N226.Howmanydifferentnecklacesaretherewhichcontain4redand3bluebeads? Consideringthecolorproblemofregularheptagon,thepermutationgroupis:G[I,,2,3,4,5,6,,,......].And i(i0,.... sevenrotations,i(i1,...,7)aresevenreflections.ThuswecanP(z,.....,z)1(z76z7z 1PG(rb,r2b2,r3b3,r4b4,r5b5,r6b6,r7=1[rb76(r7b7)7(rb)r2b23]Sothecoefficient r4

1

73]

4 Sothereare4differentkindsof注意:關(guān)于項鏈翻轉(zhuǎn)問題的爭論,這里注意項鏈?zhǔn)强梢苑D(zhuǎn)的,詳見第三版書563頁例子。42.Letnbeaprimenumber.DeterminethenumberofnecklacesthatcanbemadefromnbeadsofkdifferentFirstly,weknowthatthepermutationg

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論