版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a,b,c為實數(shù),則下列結(jié)論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc22.在等差數(shù)列中,若,,則()A. B.0 C.1 D.63.在△中,點是上一點,且,是中點,與交點為,又,則的值為()A. B. C. D.4.函數(shù)的最大值為()A. B. C. D.5.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)6.過點且與圓相切的直線方程為()A. B.或C.或 D.或7.在中,分別是角的對邊,,則角為()A. B. C. D.或8.直線與直線的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.在中,三個內(nèi)角成等差數(shù)列是的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件10.向正方形ABCD內(nèi)任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),函數(shù),若對所有的總存在,使得成立,則實數(shù)的取值范圍是__________.12.已知與之間的一組數(shù)據(jù),則與的線性回歸方程必過點__________.13.函數(shù)的定義域為________14.不論k為何實數(shù),直線通過一個定點,這個定點的坐標(biāo)是______.15.?dāng)?shù)列滿足,則________.16.已知空間中的三個頂點的坐標(biāo)分別為,則BC邊上的中線的長度為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,,的對邊分別為,,,已知.(1)判斷的形狀;(2)若,,求.18.說:“綠水青山就是金山銀山”.某地相應(yīng)號召,投入資金進(jìn)行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè),根據(jù)規(guī)劃,2018年投入1000萬元,以后每年投入將比上一年減少,本年度當(dāng)?shù)芈糜螛I(yè)收入估計為500萬元,由于該項建設(shè)對旅游業(yè)的促進(jìn)作用,預(yù)計今后的旅游業(yè)收入每年會比上一年增加.(1)設(shè)年內(nèi)(2018年為第一年)總投入為萬元,旅游業(yè)總收入為萬元,寫出、的表達(dá)式;(2)至少到哪一年,旅游業(yè)的總收入才能超過總投入.(參考數(shù)據(jù):,,)19.已知動點到定點的距離與到定點的距離之比為.(1)求動點的軌跡的方程;(2)過點作軌跡的切線,求該切線的方程.20.已知函數(shù),是公差為的等差數(shù)列,是公比為的等比數(shù)列.且,,,.(1)分別求數(shù)列、的通項公式;(2)已知數(shù)列滿足:,求數(shù)列的通項公式.21.已知數(shù)列滿足:(1)設(shè)數(shù)列滿足,求的前項和:(2)證明數(shù)列是等差數(shù)列,并求其通項公式;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
本題可根據(jù)不等式的性質(zhì)以及運用特殊值法進(jìn)行代入排除即可得到正確結(jié)果.【詳解】由題意,可知:對于A中,可設(shè),很明顯滿足,但,所以選項A不正確;對于B中,因為不知道的正負(fù)情況,所以不能直接得出,所以選項B不正確;對于C中,因為,所以,所以,所以選項C正確;對于D中,若,則不能得到,所以選項D不正確.故選:C.【點睛】本題主要考查了不等式性質(zhì)的應(yīng)用以及特殊值法的應(yīng)用,著重考查了推理能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到答案.【詳解】等差數(shù)列中,若,【點睛】本題考查了等差數(shù)列的性質(zhì),屬于簡單題.3、D【解析】試題分析:因為三點共線,所以可設(shè),又,所以,,將它們代入,即有,由于不共線,從而有,解得,故選擇D.考點:向量的基本運算及向量共線基本定理.4、D【解析】
函數(shù)可以化為,設(shè),由,則,即轉(zhuǎn)化為求二次函數(shù)在上的最大值.【詳解】由設(shè),由,則.即求二次函數(shù)在上的最大值所以當(dāng),即時,函數(shù)取得最大值.故選:D【點睛】本題考查的二次型函數(shù)的最值,屬于中檔題.5、C【解析】
根據(jù)題意,結(jié)合函數(shù)的奇偶性分析可得函數(shù)的解析式,作出函數(shù)圖象,結(jié)合不等式和二次函數(shù)的性質(zhì)以及函數(shù)圖象中的遞減區(qū)間,分析可得答案.【詳解】根據(jù)題意,設(shè)x>0,則-x<0,所以f(-x)=-x因為f(x)是定義在R上的奇函數(shù),所以f(-x)=-x所以f(x)=x即x≥0時,當(dāng)x<0時,f(x)=-x則f(x)的圖象如圖:在區(qū)間(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3時,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故選C.【點睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,利用函數(shù)的奇偶性求出函數(shù)的解析式,根據(jù)圖象解不等式是本題的關(guān)鍵,屬于難題.6、C【解析】
分別考慮斜率存在和不存在兩種情況得到答案.【詳解】如圖所示:當(dāng)斜率不存在時:當(dāng)斜率存在時:設(shè)故答案選C【點睛】本題考查了圓的切線問題,忽略掉斜率不存在是容易發(fā)生的錯誤.7、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【詳解】在中,因為,由正弦定理,可得,又由,且,所以或,故選D.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練利用正弦定理,求得的值是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】
聯(lián)立方程組,求得交點的坐標(biāo),即可得到答案.【詳解】由題意,聯(lián)立方程組:,解得,即兩直線的交點坐標(biāo)為,在第二象限,選B.【點睛】本題主要考查了兩條直線的位置關(guān)系的應(yīng)用,著重考查了運算與求解能力,屬于基礎(chǔ)題.9、B【解析】
根據(jù)充分條件和必要條件的定義結(jié)合等差數(shù)列的性質(zhì)進(jìn)行求解即可.【詳解】在△ABC中,三個內(nèi)角成等差數(shù)列,可能是A,C,B成等差數(shù)列,則A+B=2C,則C=60°,不一定滿足反之若B=60°,則A+C=120°=2B,則A、B、C成等差數(shù)列,∴三個內(nèi)角成等差數(shù)列是的必要非充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,考查了等差中項的應(yīng)用,屬于基礎(chǔ)題.10、C【解析】
由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
分別求得f(x)、g(x)在[0,]上的值域,結(jié)合題意可得它們的值域間的包含關(guān)系,從而求得實數(shù)m的取值范圍.【詳解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),當(dāng)x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].對于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于對所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]?[1,2],故有3﹣m≤2,﹣+3≥1,解得實數(shù)m的取值范圍是[1,].故答案為.【點睛】本題考查兩角和與差的正弦函數(shù),著重考查三角函數(shù)的性質(zhì)的運用,考查二倍角的余弦,解決問題的關(guān)鍵是理解“對所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立”的含義,轉(zhuǎn)化為f(x)的值域是g(x)的子集.12、【解析】
根據(jù)線性回歸方程一定過樣本中心點,計算這組數(shù)據(jù)的樣本中心點,求出和的平均數(shù)即可求解.【詳解】由題意可知,與的線性回歸方程必過樣本中心點,,所以線性回歸方程必過.故答案為:【點睛】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點這一特征,屬于基礎(chǔ)題.13、【解析】
根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,即可求解.【詳解】由題意,根據(jù)反余弦函數(shù)的定義,可得函數(shù)滿足,解得,即函數(shù)的定義域為.故答案為:【點睛】本題主要考查了反余弦函數(shù)的定義的應(yīng)用,其中解答中熟記反余弦函數(shù)的定義,列出不等式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、(2,3)【解析】
將直線方程變形為,它表示過兩直線和的交點的直線系,解方程組,得上述直線恒過定點,故答案為.【方法點睛】本題主要考查待定直線過定點問題.屬于中檔題.探索曲線過定點的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進(jìn)行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關(guān).15、【解析】
根據(jù)題意可求得和的等式相加,求得,進(jìn)而推出,判斷出數(shù)列是以6為周期的數(shù)列,進(jìn)而根據(jù)求出答案?!驹斀狻繉⒁陨蟽墒较嗉拥脭?shù)列是以6為周期的數(shù)列,故【點睛】對于遞推式的使用,我們可以嘗試讓取或,又得一個遞推式,將兩個遞推式相加或者相減來找規(guī)律,本題是一道中等難度題目。16、【解析】
先求出BC的中點,由此能求出BC邊上的中線的長度.【詳解】解:因為空間中的三個頂點的坐標(biāo)分別為,所以BC的中點為,所以BC邊上的中線的長度為:,故答案為:.【點睛】本題考查三角形中中線長的求法,考查中點坐標(biāo)公式、兩點間距離的求法等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為直角三角形或等腰三角形(2)【解析】
(1)由正弦定理和題設(shè)條件,得,再利用三角恒等變換的公式,化簡得,進(jìn)而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【詳解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,則,則或,所以或,所以為直角三角形或等腰三角形.(2)因為,則為等腰三角形,從而,由余弦定理,得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(1),;(2)2022年【解析】
(1)根據(jù)題意,知每年投入資金和旅游業(yè)收入是等比數(shù)列,根據(jù)等比數(shù)列的前n項和公式,即可求解;(2)根據(jù)(1)中解析式,列出不等式,令,化簡不等式,即可求解.【詳解】解:(1)2018年投入為1000萬元,第年投入為萬元,所以,年內(nèi)的總投入為.2018年旅游業(yè)收入為500萬元,第年旅游業(yè)收入為萬元,所以,年內(nèi)的旅游業(yè)總收入為.(2)設(shè)至少經(jīng)討年,旅游業(yè)的總收入才能超討總投入,由此得,即,令,代入上式得,解得或(舍去),即,不等式兩邊取常用對數(shù),,即.∴∴至少到2022年,旅游業(yè)的總收入才能超過總投入.【點睛】本題考查等比數(shù)列求和公式,轉(zhuǎn)化法解指數(shù)不等式,考查數(shù)學(xué)建模思想方法,考查計算能力,屬于中等題型.19、(1),(2)或【解析】
(1)首先根據(jù)題意列出等式,再化簡即可得到軌跡方程.(2)首先根據(jù)題意設(shè)出切線方程,再利用圓心到切線的距離等于半徑即可求出切線方程.【詳解】(1)設(shè),有題知,,所以點的軌跡的方程:.(2)當(dāng)切線斜率不存在時,切線為圓心到的距離,舍去.當(dāng)切線斜率存在時,設(shè)切線方程為.圓心到切線的距離,解得:或.即切線方程為:或.【點睛】本題第一問考查了圓的軌跡方程,第二問考查了直線與圓的位置關(guān)系中的切線問題,屬于中檔題.20、(1),;(2).【解析】
(1)根據(jù)題意分別列出關(guān)于、的方程,求出這兩個量,然后分別求出數(shù)列、的首項,再利用等差數(shù)列和等比數(shù)列的通項公式可計算出數(shù)列、的通項公式;(2)令可得出的值,再令,由得出,兩式相減可求出,于此得出數(shù)列的通項公式.【詳解】(1)由題意得,,,解得,且,,,,,且,整理得,解得,,,由等比數(shù)列的通項公式可得;(2)由題意可知,對任意的,.當(dāng)時,,;當(dāng)時,由,可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2020年安徽省中考英語試卷及答案解析
- 小學(xué)一年級20以內(nèi)加減法試題口算速算練習(xí)題
- 銀銅合金焊接知識點
- 地產(chǎn)建筑行業(yè)技術(shù)工作總結(jié)
- 會計行業(yè)會計人員培訓(xùn)總結(jié)
- 精神科護士的綜合總結(jié)
- 零售業(yè)務(wù)員工作總結(jié)
- 雇傭勞動關(guān)系協(xié)議三篇
- 高校實踐教學(xué)的質(zhì)量提升
- 2024年廣東省清遠(yuǎn)市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年7月國家開放大學(xué)法學(xué)本科《知識產(chǎn)權(quán)法》期末考試試題及答案
- 2024年河南省公務(wù)員錄用考試《行測》試題及答案解析
- (2024年)剪映入門教程課件
- 四年級上冊道法知識點匯總
- 2019年最新部編版四年級語文上冊第七單元達(dá)標(biāo)檢測卷含答案(新版)
- 2018中國美業(yè)發(fā)展經(jīng)濟共享峰會方案-41P
- 資產(chǎn)負(fù)債表、業(yè)務(wù)活動表(民非)
- 人教版八年級下冊英語單詞表(按單元排序)全冊(附音標(biāo)和解釋)
- 鋁合金鑄件成本核算
- 鍋爐超溫超壓考核管理辦法
- 供應(yīng)鏈管理中的分銷環(huán)節(jié)培訓(xùn)課件
評論
0/150
提交評論