版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知a,b,c滿足,那么下列選項(xiàng)一定正確的是()A. B. C. D.2.為了解某地區(qū)的中小學(xué)生視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是()A.簡單隨機(jī)抽樣 B.按性別分層抽樣C.按學(xué)段分層抽樣 D.系統(tǒng)抽樣3.Rt△ABC的三個(gè)頂點(diǎn)都在一個(gè)球面上,兩直角邊的長分別為6和8,且球心O到平面ABC的距離為12,則球的半徑為()A.13 B.12 C.5 D.104.已知,則的值為()A. B.1 C. D.5.等比數(shù)列,…的第四項(xiàng)等于(
)A.-24 B.0 C.12 D.246.已知,且,則()A. B.7 C. D.7.設(shè)為直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知點(diǎn),為坐標(biāo)原點(diǎn),分別在線段上運(yùn)動(dòng),則的周長的最小值為()A. B. C. D.9.如圖,在圓內(nèi)隨機(jī)撒一把豆子,統(tǒng)計(jì)落在其內(nèi)接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內(nèi)的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n10.已知的三邊滿足,則的內(nèi)角C為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.《九章算術(shù)》是體現(xiàn)我國古代數(shù)學(xué)成就的杰出著作,其中(方田)章給出的計(jì)算弧田面積的經(jīng)驗(yàn)公式為:弧田面積(弦矢矢2),弧田(如圖陰影部分)由圓弧及其所對的弦圍成,公式中“弦”指圓弧所對弦的長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有弧長為米,半徑等于米的弧田,則弧所對的弦的長是_____米,按照上述經(jīng)驗(yàn)公式計(jì)算得到的弧田面積是___________平方米.12.在中,角所對的邊分別為,,則____13.中,,則A的取值范圍為______.14.已知中內(nèi)角的對邊分別是,,,,則為_____.15.在數(shù)列中,,,則________.16.函數(shù)的定義域是________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點(diǎn).(1)證明:平面平面.(2)求點(diǎn)到平面的距離.18.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進(jìn)行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與2組檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計(jì)算公式:,,其中、表示樣本的平均值)19.如圖,在平面四邊形中,已知,,在上取點(diǎn),使得,連接,若,。(1)求的值;(2)求的長。20.已知三棱錐中,,.若平面分別與棱相交于點(diǎn)且平面.求證:(1);(2).21.已知△ABC的頂點(diǎn)A4,3,AB邊上的高所在直線為x-y-3=0,D為AC中點(diǎn),且BD所在直線方程為3x+y-7=0(1)求頂點(diǎn)B的坐標(biāo);(2)求BC邊所在的直線方程。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性質(zhì)即可得出.【詳解】∵c<b<a,且ac<1,∴c<1且a>1,b與1的大小關(guān)系不定.∴滿足bc>ac,ac<ab,故選D.【點(diǎn)睛】本題考查了不等式的基本性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】試題分析:符合分層抽樣法的定義,故選C.考點(diǎn):分層抽樣.3、A【解析】
利用勾股定理計(jì)算出球的半徑.【詳解】的斜邊長為,所以外接圓的半徑為,所以球的半徑為.故選:A【點(diǎn)睛】本小題主要考查勾股定理計(jì)算,考查球的半徑有關(guān)計(jì)算,屬于基礎(chǔ)題.4、B【解析】
化為齊次分式,分子分母同除以,化弦為切,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查已知三角函數(shù)值求值,通過齊次分式化弦為切,屬于基礎(chǔ)題.5、A【解析】由x,3x+3,6x+6成等比數(shù)列得選A.考點(diǎn):該題主要考查等比數(shù)列的概念和通項(xiàng)公式,考查計(jì)算能力.6、D【解析】
由平方關(guān)系求得,再由商數(shù)關(guān)系求得,最后由兩角和的正切公式可計(jì)算.【詳解】,,,,.故選:D.【點(diǎn)睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關(guān)系.屬于基礎(chǔ)題.7、B【解析】A中,也可能相交;B中,垂直與同一條直線的兩個(gè)平面平行,故正確;C中,也可能相交;D中,也可能在平面內(nèi).【考點(diǎn)定位】點(diǎn)線面的位置關(guān)系8、C【解析】
分別求出設(shè)關(guān)于直線對稱的點(diǎn),關(guān)于對稱的點(diǎn),當(dāng)共線時(shí),的周長取得最小值,為,利用兩點(diǎn)間的距離公式,求出答案.【詳解】過兩點(diǎn)的直線方程為設(shè)關(guān)于直線對稱的點(diǎn),則,解得即,同理可求關(guān)于對稱的點(diǎn),當(dāng)共線時(shí)的周長取得最小值為.故選C.【點(diǎn)睛】本題主要考查了點(diǎn)關(guān)于直線的對稱性的簡單應(yīng)用,試題的技巧性較強(qiáng),屬于中檔題.9、B【解析】試題分析:設(shè)正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點(diǎn):幾何概型.【方法點(diǎn)睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點(diǎn)容易造成失分,在備考時(shí)要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯(cuò)誤;(2)基本事件對應(yīng)的區(qū)域測度把握不準(zhǔn)導(dǎo)致錯(cuò)誤;(3)利用幾何概型的概率公式時(shí),忽視驗(yàn)證事件是否等可能性導(dǎo)致錯(cuò)誤.10、C【解析】原式可化為,又,則C=,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在中,由題意可知:,弧長為,即可以求出,則求得的值,根據(jù)題意可求矢和弦的值及弦長,利用公式可以完成.【詳解】如上圖在中,可得:,可以得:矢=所以:弧田面積(弦矢矢2)=所以填寫(1).(2).【點(diǎn)睛】本題是數(shù)學(xué)文化考題,扇形為載體的新型定義題,求弦長屬于簡單的解三角形問題,而作為第二空,我們首先知道公式中涉及到了“矢”,所以我們必須把“矢”的定義弄清楚,再借助定義求出它的值,最后只是簡單代入公式計(jì)算即能完成.12、【解析】
利用正弦定理將邊角關(guān)系式中的邊都化成角,再結(jié)合兩角和差公式進(jìn)行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結(jié)果:【點(diǎn)睛】本題考查李用正弦定理進(jìn)行邊角關(guān)系式的化簡問題,屬于常規(guī)題.13、【解析】
由正弦定理將sin2A≤sin2B+sin2C-sinBsinC變?yōu)?,然后用余弦定理推論可求,進(jìn)而根據(jù)余弦函數(shù)的圖像性質(zhì)可求得角A的取值范圍.【詳解】因?yàn)閟in2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因?yàn)椋裕军c(diǎn)睛】在三角形中,已知邊和角或邊、角關(guān)系,求角或邊時(shí),注意正弦、余弦定理的運(yùn)用.條件只有角的正弦時(shí),可用正弦定理的推論,將角化為邊.14、【解析】
根據(jù)正弦定理即可.【詳解】因?yàn)?,,;所以,由正弦定理可得【點(diǎn)睛】本題主要考查了正弦定理:,屬于基礎(chǔ)題.15、【解析】
由遞推公式可以求出,可以歸納出數(shù)列的周期,從而可得到答案.【詳解】由,,.,可推測數(shù)列是以3為周期的周期數(shù)列.所以。故答案為:【點(diǎn)睛】本題考查數(shù)量的遞推公式同時(shí)考查數(shù)列的周期性,屬于中檔題.16、【解析】
根據(jù)的值域?yàn)榍蠼饧纯?【詳解】由題.故定義域?yàn)?故答案為:【點(diǎn)睛】本題主要考查了反三角函數(shù)的定義域,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)由,為的中點(diǎn),可得,又平面,可得,即可證明平面,結(jié)合平面,即可證明平面平面;(2)設(shè)點(diǎn)到平面的距離為,由等體積法,,即,求解即可.【詳解】(1)證明:,為的中點(diǎn),.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.設(shè)點(diǎn)到平面的距離為,由,得,即,,即點(diǎn)到平面的距離為.【點(diǎn)睛】本題考查了面面垂直的證明,考查了利用等體積法求點(diǎn)到面的距離,考查了學(xué)生的空間想象能力,屬于中檔題.18、(1);(2);(3)線性回歸方程是可靠的.【解析】
(1)用列舉法求出基本事件數(shù),計(jì)算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計(jì)算與8時(shí)的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.【詳解】解:(1)設(shè)“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當(dāng)時(shí),,,當(dāng)時(shí),,.故得到的線性回歸方程是可靠的.【點(diǎn)睛】本題考查了線性回歸方程的求法與應(yīng)用問題,考查古典概型的概率計(jì)算問題,屬于中檔題.19、(1);(2).【解析】試題分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.試題解析:(1)在中,據(jù)正弦定理,有.∵,,,∴.(2)由平面幾何知識(shí),可知,在中,∵,,∴.∴.在中,據(jù)余弦定理,有∴點(diǎn)睛:此題考查了正弦定理、余弦定理的應(yīng)用,利用正弦、余弦定理可以很好得解決了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵.在中,涉及三邊三角,知三(除已知三角外)求三,可解出三角形,當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時(shí),運(yùn)用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時(shí),運(yùn)用余弦定理求解.20、(1)證明見解析;(2)證明見解析.【解析】
(1)利用線面平行的性質(zhì)定理可得線線平行,最后利用平行公理可以證明出;(2)利用線面垂直的判定定理可以證明線面垂直,利用線面垂直的性質(zhì)可以證明線線垂直,利用平行線的性質(zhì),最后證明出.【詳解】證明(1)因?yàn)槠矫?,平面平?平面,所以有,同理可證出,根據(jù)平行公理,可得;(2)因?yàn)椋?平面,所以平面,而平面,所以,由(1)可知,所以.【點(diǎn)睛】本題考查了線面平行的性質(zhì)定理,線面垂直的判定定理、以及平行公理的應(yīng)用.21、(1)B(0,7)(2)19x+y-7=0【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育用品采購合同審核
- 企業(yè)年會(huì)導(dǎo)演合作協(xié)議
- 員工發(fā)展與福利計(jì)劃
- 廣告?zhèn)髅蕉麻L聘用協(xié)議樣本
- 財(cái)務(wù)報(bào)告保密協(xié)議管理辦法
- 頸椎病的診斷與治理
- 水利工程招投標(biāo)合同審查要點(diǎn)
- 售后服務(wù)管理評審修訂制度
- 電子競技公司聘用合同范本
- 初級消防安全課件
- 四級翻譯完整版本
- 2024年酒店轉(zhuǎn)讓居間協(xié)議
- 小學(xué)生安全教育與自我保護(hù)能力培養(yǎng)研究課題研究方案
- 2024年福建省公務(wù)員錄用考試《行測》答案及解析
- 美麗農(nóng)村路建設(shè)指南DB41-T 1935-2020
- 2024年大學(xué)試題(計(jì)算機(jī)科學(xué))-網(wǎng)絡(luò)工程設(shè)計(jì)與系統(tǒng)集成考試近5年真題集錦(頻考類試題)帶答案
- 落實(shí)《中小學(xué)德育工作指南》制定的實(shí)施方案
- 2023年制藥設(shè)備行業(yè)分析報(bào)告及未來五至十年行業(yè)發(fā)展報(bào)告
- 期中測試卷(試題)-2024-2025學(xué)年三年級上冊語文統(tǒng)編版
- 醫(yī)學(xué)教材打印版護(hù)士首次執(zhí)業(yè)注冊體檢表
- 《月圓中秋節(jié):1 對月當(dāng)歌》教學(xué)設(shè)計(jì)-2024-2025學(xué)年五年級上冊綜合實(shí)踐活動(dòng)滬科黔科版
評論
0/150
提交評論