版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為A.分 B.分 C.分 D.分2.已知實數(shù)滿足且,則下列關(guān)系中一定正確的是()A. B. C. D.3.已知角的頂點為坐標(biāo)原點,始邊與軸的非負(fù)半軸重合,終邊上有一點,則()A. B. C. D.4.不等式組所表示的平面區(qū)域的面積為()A.1 B. C. D.5.函數(shù)的對稱中心是()A. B. C. D.6.圓心為且過原點的圓的方程是()A.B.C.D.7.為了得到函數(shù)的圖象,只需把函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.在區(qū)間上隨機(jī)地取一個數(shù),則事件“”發(fā)生的概率為()A. B. C. D.9.已知,若將它的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)的圖象的一條對稱軸的方程為()A. B. C. D.10.在邊長為1的等邊三角形ABC中,D是AB的中點,E為線段AC上一動點,則的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在邊長為2的菱形中,,是對角線與的交點,若點是線段上的動點,且點關(guān)于點的對稱點為,則的最小值為______.12.將十進(jìn)制數(shù)30化為二進(jìn)制數(shù)為________.13.在區(qū)間上,與角終邊相同的角為__________.14.若,且,則的最小值是______.15.公比為2的等比數(shù)列的各項都是正數(shù),且,則的值為___________16.已知為等差數(shù)列,為其前項和,若,則,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面為平行四邊形,點為中點,且.(1)證明:平面;(2)證明:平面平面.18.下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學(xué)、物理原始成績:用這44人的兩科成績制作如下散點圖:學(xué)號為22號的同學(xué)由于嚴(yán)重感冒導(dǎo)致物理考試發(fā)揮失常,學(xué)號為31號的同學(xué)因故未能參加物理學(xué)科的考試,為了使分析結(jié)果更客觀準(zhǔn)確,老師將兩同學(xué)的成績(對應(yīng)于圖中兩點)剔除后,用剩下的42個同學(xué)的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標(biāo):數(shù)學(xué)學(xué)科平均分為110.5,標(biāo)準(zhǔn)差為18.36,物理學(xué)科的平均分為74,標(biāo)準(zhǔn)差為11.18,數(shù)學(xué)成績與物理成績的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.(1)若不剔除兩同學(xué)的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學(xué)成績與物理成績的相關(guān)系數(shù)為,回歸直線為,試分析與的大小關(guān)系,并在圖中畫出回歸直線的大致位置;(2)如果同學(xué)參加了這次物理考試,估計同學(xué)的物理分?jǐn)?shù)(精確到個位);(3)就這次考試而言,學(xué)號為16號的同學(xué)數(shù)學(xué)與物理哪個學(xué)科成績要好一些?(通常為了比較某個學(xué)生不同學(xué)科的成績水平,可按公式統(tǒng)一化成標(biāo)準(zhǔn)分再進(jìn)行比較,其中為學(xué)科原始分,為學(xué)科平均分,為學(xué)科標(biāo)準(zhǔn)差).19.如圖,在平面四邊形ABCD中,,,,.(1)若點E為邊CD上的動點,求的最小值;(2)若,,,求的值.20.某種汽車的購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽油費約為萬元,年維修費用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購車費用、每年使用的保險費、養(yǎng)路費、汽油費、維修費用的和平均攤到每一年的費用叫做年平均費用.設(shè)這種汽車使用年的維修費用的和為,年平均費用為.(1)求出函數(shù),的解析式;(2)這種汽車使用多少年時,它的年平均費用最???最小值是多少?21.已知直角梯形中,,,,,,過作,垂足為,分別為的中點,現(xiàn)將沿折疊,使得.(1)求證:(2)在線段上找一點,使得,并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先“冬至”時日影長度最大,為1350分,“夏至”時日影長度最小,為160分,即可求出,進(jìn)而求出立春”時日影長度為.【詳解】解:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分,且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分.,解得,“立春”時日影長度為:分.故選B.【點睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,利用等差數(shù)列的性質(zhì)直接求解.2、D【解析】
由已知得,然后根據(jù)不等式的性質(zhì)判斷.【詳解】由且,,由得,A錯;由得,B錯;由于可能為0,C錯;由已知得,則,D正確.故選:D.【點睛】本題考查不等式的性質(zhì),掌握不等式性質(zhì)是解題關(guān)鍵,特別是性質(zhì):不等式兩同乘以一個正數(shù),不等號方向不變,不等式兩邊同乘以一個負(fù)數(shù),不等號方向改變.3、D【解析】
根據(jù)任意角三角函數(shù)定義可求得;根據(jù)誘導(dǎo)公式可將所求式子化為,代入求得結(jié)果.【詳解】由得:本題正確選項:【點睛】本題考查任意角三角函數(shù)值的求解、利用誘導(dǎo)公式化簡求值問題;關(guān)鍵是能夠通過角的終邊上的點求得角的三角函數(shù)值.4、D【解析】
畫出可行域,根據(jù)邊界點的坐標(biāo)計算出平面區(qū)域的面積.【詳解】畫出可行域如下圖所示,其中,故平面區(qū)域為三角形,且三角形面積為,故選D.【點睛】本小題主要考查線性規(guī)劃可行域面積的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.5、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點對稱,而函數(shù)的圖象可由的圖象向右平移一個單位,向下平移兩個單位得到,所以函數(shù)的圖象關(guān)于點對稱,故選C.6、D【解析】試題分析:設(shè)圓的方程為,且圓過原點,即,得,所以圓的方程為.故選D.考點:圓的一般方程.7、A【解析】
根據(jù),因此只需把函數(shù)的圖象向左平移個單位長度.【詳解】因為,所以只需把函數(shù)的圖象向左平移個單位長度即可得,選A.【點睛】本題主要考查就三角函數(shù)的變換,左加右減只針對,屬于基礎(chǔ)題.8、A【解析】由得,,所以,由幾何概型概率的計算公式得,,故選.考點:1.幾何概型;2.對數(shù)函數(shù)的性質(zhì).9、B【解析】分析:由左加右減,得出解析式,因為解析式為正弦函數(shù),所以令,解出,對k進(jìn)行賦值,得出對稱軸.詳解:由左加右減可得,解析式為正弦函數(shù),則令,解得:,令,則,故選B.點睛:三角函數(shù)圖像左右平移時,需注意要把x放到括號內(nèi)加減,求三角函數(shù)的對稱軸,則令等于正弦或余弦函數(shù)的對稱軸公式,求出x解析式,即為對稱軸方程.10、B【解析】
由題意,以點為坐標(biāo)原點,方向為軸正方向,方向為軸正方向,建立平面直角坐標(biāo)系,得到,,以及直線的方程,設(shè)出點E坐標(biāo),根據(jù)向量數(shù)量積,直接計算,即可得出結(jié)果.【詳解】如圖,以點為坐標(biāo)原點,方向為軸正方向,方向為軸正方向,建立平面直角坐標(biāo)系,因為等邊三角形的邊長為1,所以,,,,則直線的方程為,整理得,因為E為線段AC上一動點,設(shè),,則,,所以,因為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,最大值為.即的取值范圍為.故選B【點睛】本題主要考查平面向量的數(shù)量積,利用建立坐標(biāo)系的方法求解即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、-6【解析】
由題意,然后結(jié)合向量共線及數(shù)量積運算可得,再將已知條件代入求解即可.【詳解】解:菱形的對稱性知,在線段上,且,設(shè),則,所以,又因為,當(dāng)時,取得最小值-6.故答案為:-6.【點睛】本題考查了平面向量的線性運算,重點考查了向量共線及數(shù)量積運算,屬中檔題.12、【解析】
利用除取余法可將十進(jìn)制數(shù)化為二進(jìn)制數(shù).【詳解】利用除取余法得因此,,故答案為.【點睛】本題考查將十進(jìn)制數(shù)轉(zhuǎn)化為二進(jìn)制數(shù),將十進(jìn)制數(shù)轉(zhuǎn)化為進(jìn)制數(shù),常用除取余法來求解,考查計算能力,屬于基礎(chǔ)題.13、【解析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學(xué)運算能力,是簡單題.14、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.15、2【解析】
根據(jù)等比數(shù)列的性質(zhì)與基本量法求解即可.【詳解】由題,因為,又等比數(shù)列的各項都是正數(shù),故.故.故答案為:【點睛】本題主要考查了等比數(shù)列的等積性與各項之間的關(guān)系.屬于基礎(chǔ)題.16、【解析】
利用等差中項的性質(zhì)求出的值,再利用等差中項的性質(zhì)求出的值.【詳解】由等差中項的性質(zhì)可得,得,由等差中項的性質(zhì)得,.故答案為:.【點睛】本題考查等差數(shù)列中項的計算,充分利用等差中項的性質(zhì)進(jìn)行計算是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析【解析】
(1)連接交于點,連接,可證,從而可證平面.(2)可證平面,從而得到平面平面.【詳解】(1)連接交于點,連接,因為底面為平行四邊形,所以為中點.在中,又為中點,所以.又平面,平面,所以平面.(2)因為底面為平行四邊形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【點睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法是平行投影或中心投影,我們也可以通過面面平行證線面平行,這個方法的關(guān)鍵是構(gòu)造過已知直線的平面,證明該平面與已知平面平行.線面垂直的判定可由線線垂直得到,注意線線是相交的,也可由面面垂直得到,注意線在面內(nèi)且線垂直于兩個平面的交線.而面面垂直的證明可以通過線面垂直得到,也可以通過證明二面角是直二面角.18、(1),理由見解析(2)81(3)【解析】
(1)不剔除兩同學(xué)的數(shù)據(jù),44個數(shù)據(jù)會使回歸效果變差,從而得到,描出回歸直線即可;(2)將x=125代入回歸直線方程,即可得到答案;(3)利用題目給出的標(biāo)準(zhǔn)分計算公式進(jìn)行計算即可得到結(jié)論.【詳解】(1),說明理由可以是:①離群點A,B會降低變量間的線性關(guān)聯(lián)程度;②44個數(shù)據(jù)點與回歸直線的總偏差更大,回歸效果更差,所以相關(guān)系數(shù)更??;③42個數(shù)據(jù)點與回歸直線的總偏差更小,回歸效果更好,所以相關(guān)系數(shù)更大;④42個數(shù)據(jù)點更加貼近回歸直線;⑤44個數(shù)據(jù)點與回歸直線更離散,或其他言之有理的理由均可.要點:直線斜率須大于0且小于的斜率,具體為止稍有出入沒關(guān)系,無需說明理由.(2)令,代入得所以,估計同學(xué)的物理分?jǐn)?shù)大約為分.(3)由表中知同學(xué)的數(shù)學(xué)原始分為122,物理原始分為82,數(shù)學(xué)標(biāo)準(zhǔn)分為物理標(biāo)準(zhǔn)分為,故同學(xué)物理成績比數(shù)學(xué)成績要好一些.【點睛】本題考查散點圖和線性回歸方程的簡單應(yīng)用,考查數(shù)據(jù)處理與數(shù)學(xué)應(yīng)用能力.19、(1);(2)【解析】
(1)建立平面直角坐標(biāo)系,將范圍問題轉(zhuǎn)化為函數(shù)的最值問題,進(jìn)而求解函數(shù)的最值即可;(2)根據(jù)、兩點的位置,可以寫出對應(yīng)的坐標(biāo),從而在直角三角形中求得的正余弦,進(jìn)而用余弦的和角公式進(jìn)行求解.【詳解】(1)設(shè)AC,BD相交于O,由于,所以,所以,因此,以DB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標(biāo)系如下圖所示:故,,,.因為直線CD的方程為,所以可設(shè).所以,.所以,當(dāng)時,最小為.(2)因為,,所以,.因此,,.所以,.所以,.【點睛】本題考查利用向量解決幾何問題,涉及范圍問題的求解,屬經(jīng)典好題.20、(1),;(2)時,年平均費用最小,最小值為3萬元.【解析】試題分析:根據(jù)題意可知,汽車使用年的維修費用的和為,而第一年的維修費用是萬元,以后逐年遞增萬元,每一年的維修費用形成以為首項,為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項和即可求出的解析式;將購車費、每年使用的保險費、養(yǎng)路費、汽油費以及維修費用之和除以即可得到年平均費用,根據(jù)基本不等式即可求出平均費用的最小值.試題解析:(1)根據(jù)題意可知,汽車使用年的維修費用的和為,而第一年的維修費用是萬元,以后逐年遞增萬元,每一年的維修費用形成以為首項,為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式可得:因為購車費、每年使用的保險費、養(yǎng)路費、汽油費以及維
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧社區(qū)小區(qū)瀝青路面施工與養(yǎng)護(hù)合同2篇
- 2024年貴黃高速擴(kuò)建工程土地征收與房屋補償合同
- 2024年版醫(yī)藥冷鏈運輸合同
- 二零二五年度體育賽事招投標(biāo)合同2篇
- 2025年度合同封面設(shè)計創(chuàng)意元素庫共享合同3篇
- 2024年版地下建筑防水施工分包合同版
- 2025版貨車租賃及冷鏈物流服務(wù)合同范本3篇
- 2024沙卵石開采與環(huán)保監(jiān)管服務(wù)合同2篇
- 2024年貨物集裝箱內(nèi)河運輸合同
- 2024年重慶大數(shù)據(jù)中心建設(shè)合同
- 舒適化醫(yī)療麻醉
- 南寧二中、柳州高中2025屆高一上數(shù)學(xué)期末聯(lián)考試題含解析
- 高效能人士的七個習(xí)慣(課件)
- 2024年秋季學(xué)期新魯教版(54制)6年級上冊英語課件 Unit6 Section A (3a-3c)(第3課時)
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期1月教學(xué)質(zhì)量檢測(期末考試)地理試題 附答案
- 2024年廣東石油化工學(xué)院公開招聘部分新機(jī)制合同工20名歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 青年產(chǎn)業(yè)園鋁灰和廢酸資源化綜合利用試驗項目環(huán)評報告表
- 2024有限空間作業(yè)安全培訓(xùn)
- GB/T 44312-2024巡檢機(jī)器人集中監(jiān)控系統(tǒng)技術(shù)要求
- 統(tǒng)編版九下全冊古詩詞理解性默寫及答案
- 【市質(zhì)檢】福州市2024-2025學(xué)年高三年級第一次質(zhì)量檢測 物理試卷(含答案)
評論
0/150
提交評論