2023年江蘇省常州市14校聯(lián)盟數(shù)學高一下期末綜合測試試題含解析_第1頁
2023年江蘇省常州市14校聯(lián)盟數(shù)學高一下期末綜合測試試題含解析_第2頁
2023年江蘇省常州市14校聯(lián)盟數(shù)學高一下期末綜合測試試題含解析_第3頁
2023年江蘇省常州市14校聯(lián)盟數(shù)學高一下期末綜合測試試題含解析_第4頁
2023年江蘇省常州市14校聯(lián)盟數(shù)學高一下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在直角梯形中,,,,,,則梯形繞著旋轉而成的幾何體的體積為()A. B. C. D.2.設有直線和平面,則下列四個命題中,正確的是()A.若m∥α,n∥α,則m∥n B.若m?α,n?α,m∥β,l∥β,則α∥βC.若α⊥β,m?α,則m⊥β D.若α⊥β,m⊥β,m?α,則m∥α3.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內的兩個測點C與D,測得∠BCD=15°,∠BDC=30°,CD=30,并在點C測得塔頂A的仰角為60°,則塔高AB等于()A. B. C. D.4.在中,角對應的邊分別是,已知,的面積為,則外接圓的直徑為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.6.在△ABC中,,則A等于()A.30° B.60° C.120° D.150°7.等差數(shù)列,,,則此數(shù)列前項和等于().A. B. C. D.8.若,是夾角為的兩個單位向量,則與的夾角為()A. B. C. D.9.若一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為,則目標受損但未被擊毀的概率為()A. B. C. D.10.已知角的終邊經過點,則()A. B. C.-2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊上一點P的坐標為,則____.12.在中,為上的一點,且,是的中點,過點的直線,是直線上的動點,,則_________.13.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.14.若數(shù)列滿足,,則數(shù)列的通項公式______.15.已知,則____________________________.16.某球的體積與表面積的數(shù)值相等,則球的半徑是三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱的側面是邊長為2的菱形,,且.(1)求證:;(2)若,當二面角為直二面角時,求三棱錐的體積.18.如圖,四棱錐中,底面,,,點在線段上,且.(1)求證:平面;(2)若,,,求四棱錐的體積;19.已知關于的不等式.(1)當時,解上述不等式.(2)當時,解上述關于的不等式20.某校為了了解學生每天平均課外閱讀的時間(單位:分鐘),從本校隨機抽取了100名學生進行調查,根據(jù)收集的數(shù)據(jù),得到學生每天課外閱讀時間的頻率分布直方圖,如圖所示,若每天課外閱讀時間不超過30分鐘的有45人.(Ⅰ)求,的值;(Ⅱ)根據(jù)頻率分布直方圖,估計該校學生每天課外閱讀時間的中位數(shù)及平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).21.對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:分組頻數(shù)頻率2440.120.05合計1(1)求出表中,及圖中的值;(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間內的人數(shù);(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間內的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

易得梯形繞著旋轉而成的幾何體為圓臺,再根據(jù)圓臺的體積公式求解即可.【詳解】易得梯形繞著旋轉而成的幾何體為圓臺,圓臺的高,上底面圓半徑,下底面圓半徑.故該圓臺的體積故選:A【點睛】本題主要考查了旋轉體中圓臺的體積公式,屬于基礎題.2、D【解析】

在A中,m與n相交、平行或異面;在B中,α與β相交或平行;在C中,m⊥β或m∥β或m與β相交;在D中,由直線與平面垂直的性質與判定定理可得m∥α.【詳解】由直線m、n,和平面α、β,知:對于A,若m∥α,n∥α,則m與n相交、平行或異面,故A錯誤;對于B,若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交,故B錯誤;對于中,若α⊥β,α⊥β,m?α,則m⊥β或m∥β或m與β相交,故C錯誤;對于D,若α⊥β,m⊥β,m?α,則由直線與平面垂直的性質與判定定理得m∥α,故D正確.故選D.【點睛】本題考查了命題真假的判斷問題,考查了空間線線、線面、面面的位置關系的判定定理及推論的應用,體現(xiàn)符號語言與圖形語言的相互轉化,是中檔題.3、D【解析】

在三角形中,利用正弦定理求得,然后在三角形中求得.【詳解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故選:D【點睛】本小題主要考查正弦定理解三角形,考查解直角三角形,屬于基礎題.4、D【解析】

根據(jù)三角形面積公式求得;利用余弦定理求得;根據(jù)正弦定理求得結果.【詳解】由題意得:,解得:由余弦定理得:由正弦定理得外接圓的直徑為:本題正確選項:【點睛】本題考查正弦定理、余弦定理、三角形面積公式的綜合應用問題,考查學生對于基礎公式和定理的掌握情況.5、C【解析】

根據(jù)程序框圖列出算法循環(huán)的每一步,結合判斷條件得出輸出的的值.【詳解】執(zhí)行如圖所示的程序框圖如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循環(huán)體,輸出的值為,故選C.【點睛】本題考查利用程序框圖計算輸出結果,對于這類問題,通常利用框圖列出算法的每一步,考查計算能力,屬于中等題.6、C【解析】

試題分析:考點:余弦定理解三角形7、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故選D8、A【解析】

根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點睛】考查向量數(shù)量積的運算及計算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.9、D【解析】

由已知條件利用對立事件概率計算公式直接求解.【詳解】由于一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為;所以目標受損的概率為:;目標受損分為擊毀和未被擊毀,它們是對立事件;所以目標受損的概率目標受損被擊毀的概率目標受損未被擊毀的概率;故目標受損但未被擊毀的概率目標受損的概率目標受損被擊毀的概率,即目標受損但未被擊毀的概率;故答案選D【點睛】本題考查概率的求法,注意對立事件概率計算公式的合理運用,屬于基礎題.10、B【解析】按三角函數(shù)的定義,有.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎題.12、【解析】

用表示出,由對應相等即可得出.【詳解】因為,所以解得得.【點睛】本題主要考查了平面向量的基本定理,以及向量的三角形法則,平面上任意不共線的一組向量可以作為一組基底.13、【解析】正方體體積為8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點睛:設幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.14、【解析】

在等式兩邊取倒數(shù),可得出,然后利用等差數(shù)列的通項公式求出的通項公式,即可求出.【詳解】,等式兩邊同時取倒數(shù)得,.所以,數(shù)列是以為首項,以為公差的等差數(shù)列,.因此,.故答案為:.【點睛】本題考查利用倒數(shù)法求數(shù)列通項,同時也考查了等差數(shù)列的定義,考查計算能力,屬于中等題.15、【解析】

分子、分母同除以,將代入化簡即可.【詳解】因為,所以,故答案為.【點睛】本題主要考查同角三角函數(shù)之間的關系的應用,屬于基礎題.同角三角函數(shù)之間的關系包含平方關系與商的關系,平方關系是正弦與余弦值之間的轉換,商的關系是正余弦與正切之間的轉換.16、3【解析】試題分析:,解得.考點:球的體積和表面積三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)連結,交于點,連結,推導出,又,從而面,進而,推導出,由此能得到結論;(2)由題意,可證得是二面角的平面角,進而得,進而計算得,進而利用棱錐的體積公式計算即可.【詳解】(1)連結,交于點,連結,因為側面是菱形,所以,又因為,,所以面而平面,所以,因為,所以,而,所以,故.(2)因為,為的中點,則,由(1)可知,因為,所以面,作,連結,由(1)知,所以且所以是二面角的平面角,依題意得,,所以,設,則,,又由,,所以由,解得,所以.【點睛】本題考查兩個角相等的證明,考查三棱錐的體積的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)根據(jù)底面證得,證得,由此證得平面.(2)利用錐體體積公式,計算出所求錐體體積.【詳解】(1)證明:底面,平面,,,,,又,平面,平面,平面.(2),,,∴四邊形是矩形,,,又,,,即,.【點睛】本小題主要考查線面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于基礎題.19、(1).(2)當時,解集為,當時,解集為,當時,解集為或【解析】

(1)將代入,結合一元二次不等式解法即可求解.(2)根據(jù)不等式,對分類討論,即可由零點大小確定不等式的解集.【詳解】(1)當時,代入可得,解不等式可得,所以不等式的解集為.(2)關于的不等式.若,當時,代入不等式可得,解得;當時,化簡不等式可得,由解不等式可得,當時,化簡不等式可得,解不等式可得或,綜上可知,當時,不等式解集為,當時,不等式解集為,當時,不等式解集為或【點睛】本題考查了一元二次不等式的解法,含參數(shù)分類討論的應用,屬于基礎題.20、(Ⅰ);(Ⅱ)中位數(shù)估計值為32,平均數(shù)估計值為32.5.【解析】

(Ⅰ)由頻率分布直方圖的性質列出方程組,能求出,;(Ⅱ)由頻率分布直方圖,能估計該校學生每天課外閱讀時間的中位數(shù)及平均值.【詳解】(Ⅰ)由題意得,解得(Ⅱ)設該校學生每天課外閱讀時間的中位數(shù)估計值為,則解得:.該校學生每天課外閱讀時間的平均數(shù)估計值為:.答:該校學生每天課外閱讀時間的中位數(shù)估計值為32,平均數(shù)估計值為32.5.【點睛】本題考查頻率、中位數(shù)、平均數(shù)的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.21、(1);;;(2)60人.(3)【解析】

(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;(2)該校高三學生有240人,分組內的頻率是0.25,估計該校高三學生參加社區(qū)服務的次數(shù)在此區(qū)間內的人數(shù)為60人;(3)設在區(qū)間內的人為,,,,在區(qū)間內的人為,,寫出任選2人的所有基本事件,利用對立事件求得答案.【詳解】(1)由分組內的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論